Citations
At BroadPharm, we take pride in supporting thousands of global customers in their cutting-edge R&D endeavors, spanning new drug discovery, drug delivery, diagnostics, and various biomedical disciplines. Our commitment to delivering innovative, high-quality products and heartfelt service has garnered recognition, with numerous publications citing the use of BroadPharm products across a diverse range of research domains.
Catalog# | Product Name | Citations |
---|---|---|
BP-23760 | DBCO-NHCO-PEG4-acid | Holder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020. https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9 |
BP-23760 | DBCO-NHCO-PEG4-acid | Holder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2016 https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db5 |
BP-21605 | Azido-PEG3-NHS ester | James MK, Alejandro AC, Shashikanth P, et al. Albumin?Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. The Journal of Nuclear Medicine. 2018 Dec.. http://jnm.snmjournals.org/content/early/2018/12/13/jnumed.118.221150.long |
BP-21606 | Azido-PEG8-NHS ester | Kelly JM, Amor?Coarasa A, et al. Albumin?Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. The Journal of Nuclear Medicine. 2018. http://jnm.snmjournals.org/content/early/2018/12/13/jnumed.118.221150.long |
BP-21606 | Azido-PEG8-NHS ester | Chen, X., van de Sande, J. W., Ritmejeris, J., Wen, C., Brinkerhoff, H., Laszlo, A. H., ... & Dekker, C. (2024). Resolving sulfation PTMs on a plant peptide hormone using nanopore sequencing. bioRxiv. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100766/ |
BP-21606 | Azido-PEG8-NHS ester | Chen, X., van de Sande, J. W., Ritmejeris, J., Wen, C., Brinkerhoff, H., Laszlo, A. H., ... & Dekker, C. (2024). Resolving sulfation posttranslational modifications on a peptide hormone using nanopores. ACS nano, 18(42), 28999-29007. https://pubs.acs.org/doi/full/10.1021/acsnano.4c09872 |
BP-21606 | Azido-PEG8-NHS ester | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-22156 | Mal-amido-PEG2-NHS | Kirstin AZ, Christopher MW, Wen-Ting KT, et al. A dual-modality linker enables site-specific conjugation of antibody fragments for 18F-immunoPET and fluorescence imaging. The Journal of Nuclear Medicine. 2019 March; 60(7). http://jnm.snmjournals.org/content/early/2019/03/14/jnumed.118.223560.abstract |
BP-22776 | Bis-Mal-PEG19 | Kasikara C, Kumar S, et al. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression. Molecular Cancer Research. 2017. 15(6). pp. 753-764. http://mcr.aacrjournals.org/content/molcanres/early/2017/04/25/1541-7786.MCR-16-0350.full.pdf |
BP-22477 | Diazo Biotin-PEG3-azide | Schonhoft JD, Monteiro C, et al. Peptide Probes Detect Misfolded Transthyretin Oligomers in Plasma of Hereditary Amyloidosis Patients. Science Translational Medicine. 2017. 9(407). http://stm.sciencemag.org/content/9/407/eaam7621/tab-pdf |
BP-22418 | TCO-PEG4-NHS ester | Whitney S, Craig B, et al. Ferritin as a Natural Protein Scaffold: Building a Multivalent Ferritin-Fab Conjugate. Chromatography Online. 2019. 37(11). pp. 30-35. http://www.chromatographyonline.com/ferritin-natural-protein-scaffold-building-multivalent-ferritin-fab-conjugate?pageID=1 |
BP-22418 | TCO-PEG4-NHS ester | Bohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2022 https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07761 |
BP-22418 | TCO-PEG4-NHS ester | Modhiran, Naphak, Simon Malte Lauer, Alberto A. Amarilla, Peter Hewins, Sara Irene Lopes van den Broek, Yu Shang Low, Nazia Thakur A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. Iscience . 2023 https://www.sciencedirect.com/science/article/pii/S2589004223011628 |
BP-22418 | TCO-PEG4-NHS ester | Modhiran, N., Lauer, S. M., Amarilla, A. A., Hewins, P., van den Broek, S. I. L., Low, Y. S., ... & Watterson, D. (2023). A nanobody recognizes a unique conserved epitope and potently neutralizes SARS-CoV-2 omicron variants. Iscience, 26(7), 107085. https://www.sciencedirect.com/science/article/pii/S2589004223011628 |
BP-22418 | TCO-PEG4-NHS ester | Alshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231. https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849 |
BP-22418 | TCO-PEG4-NHS ester | Momin, N., Pabel, S., Rudra, A., Kumowski, N., Lee, I. H., Mentkowski, K., ... & Hulsmans, M. (2024). Therapeutic Spp1 silencing in TREM2+ cardiac macrophages suppresses atrial fibrillation. bioRxiv. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326243/ |
BP-22418 | TCO-PEG4-NHS ester | Cochran, M., Arias, D., Burke, R., Chu, D., Erdogan, G., Hood, M., ... & Doppalapudi, V. R. (2024). Structure–Activity Relationship of Antibody–Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody–siRNA Conjugates for Drug Development. Journal of medicinal chemistry. https://doi.org/10.1021/acs.jmedchem.4c00802 |
BP-23874 | Azido-PEG4-hydrazide HCl Salt | Aragon-Sanabria, Virginia, Anusha Aditya, Li Zhang, Feng Chen, Barney Yoo, Tianye Cao, Brian Madajewski Ultrasmall Nanoparticle Delivery of Doxorubicin Improves Therapeutic Index for High-Grade Glioma. Clinical Cancer Research. 2022 https://aacrjournals.org/clincancerres/article-pdf/doi/10.1158/1078-0432.CCR-21-4053/3151261/ccr-21-4053.pdf |
BP-20571 | Amino-PEG3-amine | Luo Q, Napoleon JV, et al Targeted Rejuvenation of Exhausted Chimeric Antigen Receptor T-cells Regresses Refractory Solid Tumors. Molecular Cancer Research. 2022 https://aacrjournals.org/mcr/article/doi/10.1158/1541-7786.MCR-21-0711/678413/Targeted-Rejuvenation-of-Exhausted-Chimeric |
BP-20571 | Amino-PEG3-amine | Bu, Y. J., Tijaro-Bulla, S., Cui, H., & Nitz, M. (2024). Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c07275 |
BP-20524 | Azido-PEG2-NHS ester | Liu K, Lat PK, et al CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne ‘click’ reaction in water. Nucleic Acids Research. 2020. 48(13). pp. 7256-7370 https://academic.oup.com/nar/article/doi/10.1093/nar/gkaa502/5855639 |
BP-20524 | Azido-PEG2-NHS ester | Mengzhe W, Christopher DM, Hui W, et al. The efficiency of 18F labelling of prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity. The Royal Society of Chemistry. 2018. https://pdfs.semanticscholar.org/22f6/b8df3e348b76c8c3fc4cfe6adc8c0e237e1f.pdf |
BP-20524 | Azido-PEG2-NHS ester | Maksimova, E., Marcano, D. E. S., & De Roo, J. (2025). Quantification of azides on the surface of nanoparticles: towards precise bioconjugation. https://chemrxiv.org/engage/chemrxiv/article-details/67b722916dde43c908b286d4 |
BP-21635 | t-Boc-N-amido-PEG4-acid | Dewaele-Le Roi, Guillaume Second Generation Phenyloxadiazolyl Methyl Sulfones for Thiol-Specific Bioconjugations. CUNY Academic Works. 2023 https://academicworks.cuny.edu/gc_etds/5162/ |
BP-21635 | t-Boc-N-amido-PEG4-acid | Van der Beelen SHE, Agten SM, et al. Design and synthesis of a multivalent catch-and-release assay to measure circulating FXIa. Thrombosis Research. 2021. 200. pp. 16-22. https://www.thrombosisresearch.com/article/S0049-3848(21)00010-4/fulltext |
BP-22960 | DBCO-NHCO-PEG13-NHS ester | Kin MA, Steven IP, et al Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Science Advances. 2020. 6(27) https://advances.sciencemag.org/content/6/27/eaba8564.full |
BP-25711 | ALC-0159 | Lewis, M. M., Soto, M. R., Maier, E. Y., Wulfe, S. D., Bakheet, S., Obregon, H., & Ghosh, D. (2023). Optimization of ionizable lipids for aerosolizable mRNA lipid nanoparticles. Bioengineering & Translational Medicine, e10580. https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/btm2.10580 |
BP-25711 | ALC-0159 | Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728. https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6 |
BP-25711 | ALC-0159 | McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics. https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a |
BP-25711 | ALC-0159 | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25711 | ALC-0159 | Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370. https://www.mdpi.com/2076-393X/13/4/370 |
BP-21503 | Amino-PEG12-alcohol | Banlaki I, Lehr FX, et al Microfluidic production of porous polymer cell-mimics capable of gene expression. arXiv. 2021 https://arxiv.org/ftp/arxiv/papers/2101/2101.07135.pdf |
BP-21503 | Amino-PEG12-alcohol | Lei Z, Ying M, Dale OK, et al. Rational Design of Matrix Metalloproteinase-13 Activatable Probes for Enhanced Specificity. ACS Chemical Biology. 2014; 9(2): pp. 510-516. https://pubs.acs.org/doi/abs/10.1021/cb400698s |
BP-22066 | DBCO-amine | Maciej K, Lin L, Supriyo B, et al. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell Engaging antibodies) for cellular immunotherapy. BMC Cancer. 2019 September; 19 (882). https://bmccancer.biomedcentral.com/track/pdf/10.1186/s12885-019-6056-8 |
BP-22066 | DBCO-amine | Lwin, Thinzar M., Megan Minnix, Lin Li, Anakim Sherman, Teresa Hong, Jeffery YC Wong, Tove Olafsen Multimodality PET and Near-Infrared Fluorescence Intraoperative Imaging of CEA-Positive Colorectal Cancer.. Molecular Imaging and Biology. 2023 https://link.springer.com/article/10.1007/s11307-023-01831-8 |
BP-22066 | DBCO-amine | Nakata N, Kobashi N, et al. Radiation dosimetry and efficacy of an 89Zr/225Ac-labeled humanized anti-MUC5AC antibody. Nuclear Medicine and Biology. 2022. 108-109. pp. 33-43. https://www.sciencedirect.com/science/article/pii/S0969805122000221 |
BP-22535 | Cy3 NHS ester | Hara, Yoshika, Atsuya Yaguchi, Hirotsugu Hiramatsu, and Takahiro Muraoka. ROS?Triggered Gel?Sol Transition and Kinetics?Controlled Cargo Release by Methionine?Containing Peptides. ChemBioChem. 2023 https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202200798 |
BP-22535 | Cy3 NHS ester | Feiner IVJ, Pulagam KR, et al. Pre-targeting with ultra-small nanoparticles: boron carbon dots as drug candidates for boron neutron capture therapy. Journal of Materials Chemistry B. 2021. 9(2). pp. 410-420. https://pubs.rsc.org/en/content/articlelanding/2021/tb/d0tb01880e/unauth |
BP-20631 | m-PEG4-azide | Eriksson, Camilla, Sunithi Gunasekera, Taj Muhammad, Mingshu Zhang, Ida Laurén, Sara M. Mangsbo, Martin Lord, and Ulf Göransson Epitopes displayed in a cyclic peptide scaffold bind SARS?CoV?2 antibodies.. ChemBioChem. 2023 https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202300103 |
BP-22288 | DBCO-PEG4-NHS ester | Studer, Tetiana, Daria Morina, Inga S. Shchelik, and Karl Gademann. Biohybrid Microswimmers for Antibiotic Drug Delivery Based on a Thiol?Sensitive Release Platform. Chemistry-A European Journal. 2023 https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202203913 |
BP-22288 | DBCO-PEG4-NHS ester | Mauser, Ava, Daniel F. Quevedo, Boya Zhang, Yazmin Hernandez, Anthony Berardi, William Brown, Sophia Lee Enzyme?based Synthetic Protein Nanoparticles as Colloidal Antioxidants. Advanced Therapeutics. 2023 https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300007 |
BP-22288 | DBCO-PEG4-NHS ester | Krishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102. https://www.mdpi.com/1999-4923/16/1/102 |
BP-22288 | DBCO-PEG4-NHS ester | Dong, Y., You, F., Zhang, Y., Sun, H., Cheng, R., Zhao, S., ... & Zhong, Z. (2024). CD7 Nanobody-Based Immuno-Nanotoxin for Targeted Treatment of T-Cell Acute Lymphoblastic Leukemia. ACS Applied Nano Materials, 7(7), 7195-7202. https://doi.org/10.1021/acsanm.3c06253 |
BP-23768 | endo-BCN-PEG8-acid | Holder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2017 https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db6 |
BP-23768 | endo-BCN-PEG8-acid | Holder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020. https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9 |
BP-22420 | TCO-PEG4-acid | Holder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2018 https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db7 |
BP-22420 | TCO-PEG4-acid | Holder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020. https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9 |
BP-21118 | m-PEG8-thiol | Holder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2019 https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db8 |
BP-21118 | m-PEG8-thiol | Holder P, ElSohly AM. Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020. https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9 |
BP-21118 | m-PEG8-thiol | Jiang Z, Cui W, et al. Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery. Industrial & Engineering Chemistry Research. 2019, 58(17). pp. 6982-6991. https://pubs.acs.org/doi/full/10.1021/acs.iecr.9b00666 |
BP-21111 | m-PEG8-amine | Holder P, ElSohly AM Reaction Landsape and Bioconjugation Profile of Tyrosinase Generated Quinones. ChemRXiv. 2020 https://chemrxiv.org/engage/chemrxiv/article-details/60c74b2eee301c2d46c79db9 |
BP-21627 | Fmoc-N-amido-PEG2-acid | Upadhya, Rahul, Matthew Tamasi, Elena Di Mare, Sanjeeva Murthy, and Adam Gormley Data-Driven Design of Protein-Like Single-Chain Polymer Nanoparticles. ChemRxiv. 2022 https://chemrxiv.org/engage/chemrxiv/article-details/631f37eabe03b23be6f3014d |
BP-21627 | Fmoc-N-amido-PEG2-acid | Tong, Y., Gu, M., Luo, X., Qi, H., Jiang, W., Deng, Y., ... & Hu, Y. (2023). An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy. Journal of Controlled Release, 363, 562-573. https://www.sciencedirect.com/science/article/abs/pii/S0168365923006557 |
BP-22423 | TCO-PEG12-DBCO | Tapia, A. R., Abgottspon, F., Nilvebrant, J., Nygren, P. Å., Ivetich, S. D., Hernandez, A. J. B., ... & Richards, D. (2023). Site-directed Conjugation of Single-Stranded DNA to Affinity Proteins: Quantifying the Importance of Conjugation Strategy. https://chemrxiv.org/engage/chemrxiv/article-details/64d7ab2969bfb8925ad15c08 |
BP-20617 | Bis-PEG2-NHS ester | Phong DL, Hui W, Dongyan T, et al. Structure of the Centromere Binding Factor 3 Complex from Kluyveromyces lactis. Journal of Molecular Biology. 2019 https://crystal.harvard.edu/wp-content/uploads/2019/09/Phong_CBF3.pdf |
BP-21683 | Propargyl-PEG3-amine | Merlo R, Caprioglio D, et al. The SNAP-tag technology revised: an effective chemo-enzymatic approach by using a universal azide-based substrate. Journal of Enzyme Inhibition and Medicinal Chemistry. 2020. 36(1). pp. 85-97. https://doi.org/10.1080/14756366.2020.1841182 |
BP-21683 | Propargyl-PEG3-amine | MERLO, R. Thermostable DNA repair enzymes for novel biotechnological applications. http://www.fedoa.unina.it/13902/1/Merlo_Rosa_33.pdf |
BP-23309 | Sulfo DBCO-amine | Asker, Mohammed, Jean?Philippe Krieger, Amber Liles, Ian C. Tinsley, Tito Borner, Ivana Maric, Sarah Doebley et al. Peripherally restricted oxytocin is sufficient to reduce food intake and motivation, while CNS?entry is required for locomotor and taste avoidance effects. Diabetes, Obesity, and Metabolism. 2022 https://dom-pubs.onlinelibrary.wiley.com/doi/abs/10.1111/dom.14937 |
BP-23738 | N-Mal-N-bis(PEG2-acid) | Torrieri, Giulia Development of drug-loaded acetalated dextran-based nanoparticles for hear targeting and treatment of myocardial infarction. Helsingin yliopisto. 2022 https://helda.helsinki.fi/server/api/core/bitstreams/e500f246-fd3f-4f48-ad8f-85ca4dfd15a9/content |
BP-24516 | Thiol-PEG4-alcohol | Allen, N. C. (2023). Tumor targeting gold nanoparticles for delivery of RNA and DNA oligonucleotide therapies for glioblastoma. https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=5388&context=etd |
BP-24516 | Thiol-PEG4-alcohol | Allen, Nicholas C., Rajat Chauhan, Paula J. Bates, and Martin G. O’Toole Optimization of Tumor Targeting Gold Nanoparticles for Glioblastoma Applications. Nanostructured Materials for Biological and Pharmaceutical Applications. 2022 https://www.mdpi.com/2079-4991/12/21/3869/htm |
BP-20644 | Fmoc-PEG4-NHS ester | Zhou Z, Meshaw R, et al Site-Specific and Residualizing Linker for 18F-Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single Domain Antibody Fragment. Journal of Nuclear Medicine. 2021. 63(3) https://jnm.snmjournals.org/content/early/2021/02/26/jnumed.120.261446.abstract |
BP-22479 | TAMRA-PEG3-Azide | Wang, Q. Q., Sun, M., Tang, T., Lai, D. H., Liu, J., Maity, S., ... & Long, S. (2023). Functional screening reveals Toxoplasma prenylated proteins required for endocytic trafficking and rhoptry protein sorting. Mbio, 14(4), e01309-23. https://journals.asm.org/doi/abs/10.1128/mbio.01309-23 |
BP-22479 | TAMRA-PEG3-Azide | AhmadiKiall M, Suazo F, et al. Optimization of Metabolic Labeling with Alkyne-Containing Isoprenoid Probes. Springer: Methods in Molecular Biology Book Series - Protein Lipidation. 2019. 2009. pp. 35-43. https://link.springer.com/protocol/10.1007/978-1-4939-9532-5_3 |
BP-22225 | Azido-PEG8-amine | Feng, Jiaxu. Inhaled Dendrimer-Telmisartan Conjugate for Acute Silicosis. PhD diss., Johns Hopkins University. 2022 https://jscholarship.library.jhu.edu/handle/1774.2/67300 |
BP-23819 | Propargyl-PEG1-NHS ester | Hoffmann M, Hayes MR, et al. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconjugate Journal. 2020. 37. pp. 457–470. https://link.springer.com/content/pdf/10.1007/s10719-020-09926-y.pdf |
BP-22456 | TAMRA-PEG4-DBCO | Plaks JG, Kaar JL. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization. Springer: Methods in Molecular Biology Book Series - Enzyme-Mediated Ligation Methods. 2019. 2012. pp. 279-297. https://link.springer.com/protocol/10.1007/978-1-4939-9546-2_14 |
BP-22456 | TAMRA-PEG4-DBCO | Auger, S. A., Venkatachalapathy, S., Suazo, K. F. G., Wang, Y., Sarkis, A. W., Bernhagen, K., ... & Distefano, M. D. Supporting Information Broadening the utility of farnesyltransferase-catalyzed protein labeling using norbornene-tetrazine click chemistry. https://plueckthun.bioc.uzh.ch/wp-content/uploads/Publications/Supp0533.pdf |
BP-22295 | DBCO-PEG4-biotin | Turner, Rebecca Monocyte Covalent Immune Recruiters: Tools to Modulate Synthetic Immune Recognition. PhD diss.. 2022 https://macsphere.mcmaster.ca/handle/11375/27521 |
BP-22295 | DBCO-PEG4-biotin | Rehman AU, Anton N, et al Tunable functionalization of nano-emulsions using amphiphilic polymers. Soft Matter. 2021. 17(7). pp. 1788-1795 https://pubs.rsc.org/en/content/articlelanding/2021/sm/d0sm01952f/unauth |
BP-22295 | DBCO-PEG4-biotin | Lan Y, Pan H, et al. TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Press, Cell Reports. 2019. 26(3). pp. 720-732. https://www.sciencedirect.com/science/article/pii/S2211124718320217 |
BP-22295 | DBCO-PEG4-biotin | Kolanovic, D., Pasupuleti, R., Wallner, J., Mlynek, G., & Wiltschi, B. (2024). Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Bioconjugate Chemistry, 35(12), 1944-1958. https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.4c00467 |
BP-21659 | Azido-PEG5-NHS ester | Lee HJ, Fernandes?Cunha GM, et al. Bio?Orthogonally Crosslinked, In Situ Forming Corneal Stromal Tissue Substitute. Advanced Healthcare Materials. 2018. 7(19).. https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201800560 |
BP-21659 | Azido-PEG5-NHS ester | Krishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102. https://www.mdpi.com/1999-4923/16/1/102 |
BP-21659 | Azido-PEG5-NHS ester | Kang, N. W., Seo, Y. A., Jackson, K. J., Jang, K., Song, E., Han, U., ... & Myung, D. (2024). Photoactivated growth factor release from bio-orthogonally crosslinked hydrogels for the regeneration of corneal defects. Bioactive Materials, 40, 417-429. https://www.sciencedirect.com/science/article/pii/S2452199X24002111 |
BP-22199 | Gambogic acid | Xu Q, Chu CC Development of ROS-responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. Journal of Biomedical Materials Research. 2020. 109(4). pp. 524-537 https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.37035 |
BP-22199 | Gambogic acid | Kwan HY, Xu Q, et al Targeted Chinese Medicine Delivery by A New Family of Biodegradable Pseudo-Protein Nanoparticles for Treating Triple-Negative Breast Cancer: In Vitro and In Vivo study. Frontiers in Oncology. 2021. 10 https://www.frontiersin.org/articles/10.3389/fonc.2020.600298/full |
BP-22199 | Gambogic acid | R. Ganugula, M. Arora, S. Dwivedi, D. S. Chandrashekar, S. Varambally, E. M. Scott, and M. N. V. Ravi Kumar.Systemic Anti-Inflammatory Therapy Aided by Curcumin-Laden Double-Headed Nanoparticles Combined with Injectable Long-Acting Insulin in a Rodent Model of Diabetes Eye Disease. ACS Nano. 2023 17 (7), 6857-6874. DOI: 10.1021/acsnano.3c00535 https://pubs.acs.org/doi/full/10.1021/acsnano.3c00535 |
BP-22199 | Gambogic acid | Pula, W., Ganugula, R., Esposito, E., Kumar, M. R., & Arora, M. (2024). Engineered urolithin A-laden functional polymer-lipid hybrid nanoparticles prevent cisplatin-induced proximal tubular injury in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 200, 114334. https://www.sciencedirect.com/science/article/abs/pii/S0939641124001607 |
BP-21629 | Fmoc-N-amido-PEG5-acid | Tina G, Daniel K, Christoph R, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016; 22: pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2902 |
BP-21629 | Fmoc-N-amido-PEG5-acid | Goldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905 |
BP-21632 | Fmoc-N-amido-PEG12-acid | Tina G, Daniel K, Christoph R, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016; 22: pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2903 |
BP-21632 | Fmoc-N-amido-PEG12-acid | Goldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905 |
BP-21988 | Fmoc-N-amido-PEG1-acid | Goldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905 |
BP-22035 | Fmoc-N-amido-PEG20-acid | Goldbach T, Knappe D, et al. Ribosomal binding and antibacterial activity of ethylene glycol?bridged apidaecin Api137 and oncocin Onc112 conjugates. Journal of Peptide Sciences. 2016. 22. pp. 592–599. https://onlinelibrary.wiley.com/doi/abs/10.1002/psc.2905 |
BP-23399 | Fluorescein-DBCO | Hull SM, Lindsay CD, et al 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007982 https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007982 |
BP-23399 | Fluorescein-DBCO | Hull SM, Lindsay CD, et al. 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007983. https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007983 |
BP-20518 | Azido-PEG4-NHS ester | Hull SM, Lindsay CD, et al 3D Bioprinting using UNIversal Orthogonal Network (UNION) Bioinks. Advanced Functional Materials. 2021. 31(7). 2007983 https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/adfm.202007983 |
BP-20518 | Azido-PEG4-NHS ester | Mapes, J. H., Stover, J., Stout, H. D., Folsom, T. M., Babcock, E., Loudwig, S., ... & Swaminathan, J. (2023). Robust and scalable single-molecule protein sequencing with fluorosequencing. bioRxiv, 2023-09. https://www.biorxiv.org/content/10.1101/2023.09.15.558007v1.full.pdf |
BP-20518 | Azido-PEG4-NHS ester | Brunel, L. G., Long, C. M., Christakopoulos, F., Cai, B., Johansson, P. K., Singhal, D., ... & Heilshorn, S. C. (2024). Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. bioRxiv, 2024-09. https://doi.org/10.1101/2024.09.11.612534 |
BP-20518 | Azido-PEG4-NHS ester | Brunel, L. G., Cai, B., Hull, S. M., Han, U., Wungcharoen, T., Fernandes-Cunha, G. M., ... & Myung, D. (2024). In Situ UNIversal Orthogonal Network (UNION) Bioink Deposition for Direct Delivery of Corneal Stromal Stem Cells to Corneal Wounds. bioRxiv, 2024-09. https://doi.org/10.1101/2024.09.19.613997 |
BP-20518 | Azido-PEG4-NHS ester | Brunel, L. G., Long, C. M., Christakopoulos, F., Cai, B., de Paiva Narciso, N., Johansson, P. K., ... & Heilshorn, S. C. (2025). Reinforcement of Fibrillar Collagen Hydrogels with Bioorthogonal Covalent Crosslinks. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.13.648560 |
BP-22152 | Bis-Mal-PEG6 | Heng Y, Miriam G, Ran L, et al. Modulation and Visualization of EF-G Power Stroke During Ribosomal Translocation. ChemBioChem. 2019 December; 20(23): pp. 2927-2935. https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.201900276 |
BP-21099 | N-Boc-PEG4-alcohol | Song F, Chen L, et al. Synthesis of carboxy-polyethylene glycol-amine(CA(PEG)n) and [1-14C]-CA(PEG)nvia oxa-Michael addition of amino-polyethylene glycols to propiolates vs.to acrylates. Journal of Labelled Compounds and Radiopharmaceuticals. 2019. 63(1). pp. 15-24. https://onlinelibrary.wiley.com/doi/epdf/10.1002/jlcr.3816 |
BP-25498 | ALC-0315 | Li, Zhongyu, Xue?Qing Zhang, William Ho, Xin Bai, Dabbu Kumar Jaijyan, Fengqiao Li, Ranjeet Kumar et al. "Lipid?Polymer Hybrid “Particle?in?Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID?19 Vaccines. Advanced Functional Materials. 2022 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202204462 |
BP-25498 | ALC-0315 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-25498 | ALC-0315 | Boldyrev, I.A., Shendrikov, V.P., Vostrova, A.G. et al. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem 49, 412–415 (2023). https://doi.org/10.1134/S1068162023020061 https://link.springer.com/article/10.1134/S1068162023020061 |
BP-25498 | ALC-0315 | Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., Ivanov, R., & Reshetnikov, V. (2023). Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules, 13(11), 1677. https://www.mdpi.com/2218-273X/13/11/1677 |
BP-25498 | ALC-0315 | Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888. https://www.mdpi.com/1422-0067/25/2/888 |
BP-25498 | ALC-0315 | Shepelkova, G. S., Reshetnikov, V. V., Avdienko, V. G., Sheverev, D. V., Yeremeev, V. V., & Ivanov, R. A. IMPACT OF UNTRANSLATED mRNA SEQUENCES ON IMMUNOGENICITY OF mRNA VACCINES AGAINST M. TUBERCULOSIS IN MICE. https://www.researchgate.net/profile/V-Yeremeev/publication/377479822_Impact_of_untranslated_mRNA_sequences_on_immunogenicity_of_mRNA_vaccines_against_M_tuberculosis_in_mice/links/65c1cae634bbff5ba7ef9969/Impact-of-untranslated-mRNA-sequences-on-immunogenicity-of-mRNA-vaccines-against-M-tuberculosis-in-mice.pdf |
BP-25498 | ALC-0315 | De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208 |
BP-25498 | ALC-0315 | Janssens, S., Bosteels, V., Marechal, S., Cloots, E., Van Heddegem, L., Tavernier, S., ... & Le Goff, W. (2024). The unfolded protein sensor IRE1a is essential for homeostatic dendritic cell maturation. https://www.researchsquare.com/article/rs-4763670/v1 |
BP-25498 | ALC-0315 | Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583. https://academic.oup.com/jpp/article/76/12/1572/7816331 |
BP-25498 | ALC-0315 | McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics. https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a |
BP-25498 | ALC-0315 | Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV. https://lib.ugent.be/catalog/rug01:003212736 |
BP-25498 | ALC-0315 | Grigoriev, V., Korzun, T., Moses, A. S., Jozic, A., Zhu, X., Kim, J., ... & Taratula, O. (2024). Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS nano, 18(49), 33330-33347. https://pubs.acs.org/doi/full/10.1021/acsnano.4c06930 |
BP-25498 | ALC-0315 | Chen, S. P., Wang, S., Liao, S., & Blakney, A. K. (2024). Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS Bio & Med Chem Au. https://pubs.acs.org/doi/full/10.1021/acsbiomedchemau.4c00085 |
BP-25498 | ALC-0315 | Janssens, S., Rennen, S., Bosteels, V., De Nolf, C., Van Lil, K., Maréchal, S., ... & Lentacker, I. (2024). Lipid nanoparticles as a tool to dissect dendritic cell maturation pathways. https://doi.org/10.21203/rs.3.rs-5461735/v1 |
BP-25498 | ALC-0315 | Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109. https://www.sciencedirect.com/science/article/pii/S0378517324013437 |
BP-25498 | ALC-0315 | Casmil, I. C., Bathula, N. V., Huang, C., Wayne, C. J., Cairns, E. S., Friesen, J. J., ... & Blakney, A. K. (2025). Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Molecular Therapy, 33(2), 514-528. https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(24)00855-4 |
BP-25498 | ALC-0315 | Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339. https://www.mdpi.com/2076-393X/13/4/339 |
BP-25498 | ALC-0315 | Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370. https://www.mdpi.com/2076-393X/13/4/370 |
BP-25498 | ALC-0315 | Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.21.649878 |
BP-25498 | ALC-0315 | Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726. https://doi.org/10.1016/j.ejpb.2025.114726 |
BP-22218 | Mal-amido-PEG24-NHS | Fruncillo, Silvia, Yeow Teck Toh, Christopher F. Blanford, Xiaodi Su, Hong Liu, and Lu Shin Wong Lithographic Patterning of Nanoscale Arrays of the Oxidase Enzyme CotA: Effects on Activity and Stability. Advanced Functional Materials. 2022 https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202200490 |
BP-24149 | DBCO-PEG12-NHS ester | Marple, April ST, Alexander H. Jesmer, Ben Lake, Anthony Rullo, and Ryan G. Wylie A Modular Antibody?Oligomer T Cell Engager for Applications in Local Therapies. Advanced Therapeutics. 2023 https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300124 |
BP-24149 | DBCO-PEG12-NHS ester | Marple, A. S., Jesmer, A. H., Lake, B. P., Rullo, A. F., & Wylie, R. G. (2023). A Modular Antibody?Oligomer T Cell Engager for Applications in Local Therapies. Advanced Therapeutics, 6(11), 2300124. https://onlinelibrary.wiley.com/doi/full/10.1002/adtp.202300124 |
BP-24149 | DBCO-PEG12-NHS ester | Wilson, J., Kimmel, B., Arora, K., Chada, N., Bharti, V., Kwiatkowski, A., ... & Hargrove-Wiley, E. (2024). Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. Research Square. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100900/ |
BP-22462 | DBCO-mPEG, MW 10,000 | Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8) https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902570 |
BP-22462 | DBCO-mPEG, MW 10,000 | Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8). https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573 |
BP-22463 | DBCO-mPEG, MW 20,000 | Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8) https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902571 |
BP-22463 | DBCO-mPEG, MW 20,000 | Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8). https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573 |
BP-22464 | DBCO-mPEG, MW 30,000 | Oh B, Swaminathan V, et al Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8) https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902572 |
BP-22464 | DBCO-mPEG, MW 30,000 | Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8). https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573 |
BP-22461 | DBCO-mPEG, MW 5,000 | Oh B, Swaminathan V, et al. Single-Cell Encapsulation via Click-Chemistry Alters Production of Paracrine Factors from Neural Progenitor cells. Advanced Science. 2020. 7(8). https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201902573 |
BP-21691 | Bromo-PEG5-alcohol | Gkikas M, Avery RK, et al. Hydrogels That Actuate Selectively in Response to Organophosphates. Advanced Functional Materials. 2016 Dec. https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201602784 |
BP-22478 | Carboxyrhodamine 110-PEG3-Azide | Ravi S. Cellulose-based biosensors of human neutrophil elastase (HNE) toward chronic would point-of-care diagnostics. UBC Theses and Dissertions. 2020. https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0389685 |
BP-22478 | Carboxyrhodamine 110-PEG3-Azide | Diner I, Dooyema J, et al. Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer’s Disease Brain. Bioconjugate Chemistry. 2017. 28(10). pp. 2627-2637. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.7b00500 |
BP-22084 | m-PEG6-thiol | Beggiato M, Rastogi R, et al Confined Adsorption within Nanopatterns as Generic Means to Drive High Adsorption Efficiencies on Affinity Sensors. SSRN. 2022 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4010326 |
BP-22084 | m-PEG6-thiol | Walker, Dale M., Tsvetelina I. Lazarova, Steven W. Riesinger, Miriam C. Poirier, Terri Messier, Brian Cunniff, and Vernon E. Walker WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Frontiers in Oncology. 2023 https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1212604/full |
BP-23473 | BDP FL DBCO | Tsuchiya, M., Tachibana, N., & Hamachi, I. (2023). Flow cytometric analysis of phosphatidylcholine metabolism using organelle-selective click labeling. STAR protocols, 4(3), 102525. https://www.sciencedirect.com/science/article/pii/S2666166723004926?ref=pdf_download&fr=RR-2&rr=938a13b7ca6269a6 |
BP-23473 | BDP FL DBCO | Tsuchiya M, Tachibana N, et al Organelle-selective click labeling coupled with flow cytometry allows high-throughput CRISPR screening of genes involved in phosphatidylcholine metabolism. bioRxiv. 2022 https://www.biorxiv.org/content/10.1101/2022.04.18.488621v1.abstract |
BP-22433 | Methyltetrazine-amine HCl salt | Negrini NC, Volponi AA, et al Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomaterials Science & Engineering. 2021. 7(9). pp. 4330-4346 https://pubs.acs.org/doi/10.1021/acsbiomaterials.1c00136 |
BP-22433 | Methyltetrazine-amine HCl salt | Al-Ansari, D. E., Hu, Y., Contessi Negrini, N., Birdsey, G. M., & Celiz, A. D. Three-Dimensional Modelling of Lymphangiogenesis In-Vitro Using Bioorthogonal Click-Crosslinked Gelatin Hydrogels. Available at SSRN 5212921. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5212921 |
BP-22738 | Propargyl-PEG3-bromide | Ian D, Jeromy D, Marla G, et al. Generation of Clickable Pittsburgh Compound B for the Detection and Capture of β-Amyloid in Alzheimer’s Disease Brain. Bioconjugate Chemistry. 2017; 28(10): pp. 2627-2637. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.7b00500 |
BP-23565 | N-(Azido-PEG3)-N-Boc-PEG3-NHS ester | Xiaofen M, Mengzhe W, Hui W, et al. Development of Bispecific NT-PSMA Heterodimer for Prostate Cancer Imaging: A Potential Approach to Address Tumor Heterogeneity. Bioconjugate Chemistry. 2019; 30(5): pp. 1314-1322. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.9b00252 |
BP-22537 | Cy5.5 NHS ester | Nishida K, Tamura A, et al. pH-Responsive Coacervate Droplets Formed from Acid-LabileMethylated Polyrotaxanes as an Injectable Protein Carrier. Biomacromolecules. 2018. 19. pp. 2238-2247. https://pubs.acs.org/doi/abs/10.1021/acs.biomac.8b00301 |
BP-22537 | Cy5.5 NHS ester | Soundaram Jeevarathinam, Ananthakrishnan, Waqas Saleem, Nya Martin, Connie Hu, and Michael J. McShane NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring. Biosensors and Bioelectronics. 2023 https://www.mdpi.com/2079-6374/13/1/141 |
BP-22330 | Acid-PEG13-NHS ester | Neburkova J, Sedlak F, Zackova SJ, et al. Inhibitor–GCPII Interaction: Selective and Robust System for Targeting Cancer Cells with Structurally Diverse Nanoparticles. Mol. Pharmaceuticals. 2018; 15: pp. 2932-2945. https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.7b00889 |
BP-21830 | PEG13 | Ali M, Bora S, et al. Composite-Walled Magnetic Microcapsules at the Water–Toluene Interface by Ligand Polymerization. Langmuir. 2014. 30(34). pp. 10449-10455. https://pubs.acs.org/doi/abs/10.1021/la5018054 |
BP-21830 | PEG13 | Rahaman H, Nath A, et al. Fe3O4–Mn3O4 nanocomposites with moderate magnetism for in vitro cytotoxicity studies on macrophages . RSC Advances. 2016 Sep. 6(86). pp. 83146-83153 . https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra17493k/unauth#!divAbstract |
BP-21830 | PEG13 | Ali M, Barman K, et al. Fluid interface-mediated nanoparticle membrane as electrochemical sensor. RSC Advances. 2014. 4. pp. 61404-61408 . https://pubs.rsc.org/en/content/getauthorversionpdf/C4RA12149J |
BP-23344 | Bis-sulfone NHS Ester | Chiang, W., Stout, A., Yanchik-Slade, F., Li, H., Terrando, N., Nilsson, B. L., ... & Krauss, T. D. (2023). Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood–Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation. ACS Applied Nano Materials, 6(16), 15094-15107. https://pubs.acs.org/doi/epdf/10.1021/acsanm.3c02719 |
BP-24511 | Fmoc-PEG5-alcohol | Ji, Fei, Moises Hur, Sungwon Hur, Siwen Wang, Priyanka Sarkar, Shiqun Shao, Desiree Aispuro Multiplex Protein Imaging through PACIFIC: Photoactive Immunofluorescence with Iterative Cleavage.. ACS bio & med Chem Au. 2023 https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00018 |
BP-21916 | Thiol-PEG12-acid | Yang, Lucy F., Nataly Kacherovsky, Joey Liang, Stephen J. Salipante, and Suzie H. Pun SCORe: SARS-CoV-2 Omicron Variant RBD-Binding DNA Aptamer for Multiplexed Rapid Detection and Pseudovirus Neutralization.. Analytical chemistry 94, no. 37. 2022 https://pubs.acs.org/doi/full/10.1021/acs.analchem.2c01993 |
BP-22946 | Tetrazine-NHS ester | Otaru, Sofia, Andreas Paulus, Surachet Imlimthan, Iida Kuurne, Helena Virtanen, Heidi Liljenba?ck, Tuula Tolvanen et al. Development of [18F] AmBF3 Tetrazine for Radiolabeling of Peptides: Preclinical Evaluation and PET Imaging of [18F] AmBF3-PEG7-Tyr3-Octreotide in an AR42J Pancreatic Carcinoma Model.. Bioconjugate Chemistry 33, no. 7 (2022): 1393-1404.. 2022 https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.2c00231 |
BP-22946 | Tetrazine-NHS ester | Otaru, Sofia, Tatu Martinmäki, Iida Kuurne, Andreas Paulus, Kerttuli Helariutta, Mirkka Sarparanta, and Anu J. Airaksinen Radiolabelling of peptides with tetrazine ligation based on the inverse electron-demand Diels–Alder reaction: rapid, catalyst-free and mild conversion of 1, 4-dihydropyridazines to pyridazines. RSC advances. 2023 https://pubs.rsc.org/en/content/articlehtml/2023/ra/d3ra02807k |
BP-22946 | Tetrazine-NHS ester | Alshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231. https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849 |
BP-22278 | MMAE | Samantha RB, Courtney PJ, Siteng F, et al. Thiolation of Q295: Site-Specific Conjugation of Hydrophobic Payloads without the Need for Genetic Engineering. Molecular Pharmaceuticals. 2019; 16(6): pp. 2795-2805. https://pubs.acs.org/doi/full/10.1021/acs.molpharmaceut.9b00323 |
BP-22278 | MMAE | Li, W. F., Chiang, M. F., Weng, H. C., Yang, J. J., Wu, H. S., Wu, S. Y., ... & Lai, M. T. (2025). OBI-992, a Novel TROP2-Targeted Antibody–Drug Conjugate, Demonstrates Antitumor Activity in Multiple Cancer Models. Molecular Cancer Therapeutics, 24(2), 163-175. https://doi.org/10.1158/1535-7163.MCT-24-0588 |
BP-22417 | TCO-NHS ester | Rashid, Sk Aysha, Yixiao Dong, Hiroaki Ogasawara, Maia Vierengel, Mark Edoho Essien, and Khalid Salaita. All-Covalent Nuclease-Resistant and Hydrogel-Tethered DNA Hairpin Probes Map pN Cell Traction Forces. ACS Applied Materials & Interfaces. 2023 https://pubs.acs.org/doi/full/10.1021/acsami.3c04826 |
BP-22417 | TCO-NHS ester | Kellner, A. V., Hunter, R., Do, P., Eggert, J., Jaffe, M., Geitgey, D. K., ... & Salaita, K. (2024). The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. bioRxiv, 2024-01. https://scholar.googleusercontent.com/scholar?q=cache:_MzjtxrMe88J:scholar.google.com/&hl=en&as_sdt=0,36 |
BP-22417 | TCO-NHS ester | Hu, H., & Zhang, C. (2025). Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. Journal of Biomedical Materials Research Part A, 113(1), e37807. https://doi.org/10.1002/jbm.a.37807 |
BP-23465 | Val-Cit-PAB-MMAE | Paige E. Pistono, Paul Huang, Daniel D. Brauer, Matthew B. Francis Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties. ACS Chemical Biology. 2022 https://pubs.acs.org/doi/full/10.1021/acschembio.2c0031 |
BP-20981 | m-PEG3-acid | Treat A, Henri V, et al Novel TRPV1 Modulators with Reduced Pungency Induce Analgesic Effects in Mice
. ACS Omega. 2022. 7(3). pp. 2929-2946 https://pubs.acs.org/doi/full/10.1021/acsomega.1c05727 |
BP-20429 | Bis-PEG5-NHS ester | Judmann, Benedikt, Diana Braun, Ralf Schirrmacher, Bjo?rn Wa?ngler, Gert Fricker, and Carmen Wa?ngler Toward the Development of GE11-Based Radioligands for Imaging of Epidermal Growth Factor Receptor-Positive Tumors. ACS omega 7, no. 31 . 2022 https://pubs.acs.org/doi/full/10.1021/acsomega.2c03407 |
BP-20429 | Bis-PEG5-NHS ester | Braun, D., Judmann, B., Cheng, X., Wa?ngler, B., Schirrmacher, R., Fricker, G., & Wa?ngler, C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin αvβ3 Targeting. ACS Omega. 2023 https://pubs.acs.org/doi/full/10.1021/acsomega.2c07484 |
BP-20429 | Bis-PEG5-NHS ester | Wiegand, D. J., Rittichier, J., Meyer, E., Lee, H., Conway, N. J., Ahlstedt, D., ... & Church, G. M. (2024). Template-independent enzymatic synthesis of RNA oligonucleotides. Nature Biotechnology, 1-11. https://www.nature.com/articles/s41587-024-02244-w |
BP-22442 | Sulfo-Cy5-Methyltetrazine | Bohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2021 https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07760 |
BP-22441 | Sulfo-Cy3-Methyltetrazine | Bohrmann, Lennart, Tobias Burghardt, Cristina Rodríguez-Rodríguez, Matthias M. Herth, Katayoun Saatchi, and Urs O. Ha?feli Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting.. ACS Omega. 2023 https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c07762 |
BP-25659 | DBCO-PEG4-Val-Cit-PAB-MMAE | Danielewicz, Natalia, Francesca Rosato, Jana Tomisch, Jonas Gra?ber, Birgit Wiltschi, Gerald Striedner, Winfried Ro?mer, and Juergen Mairhofer. Clickable Shiga Toxin B Subunit for Drug Delivery in Cancer Therapy.. ACS Omega. 2023 https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c00667 |
BP-25659 | DBCO-PEG4-Val-Cit-PAB-MMAE | Yang, Q., Chen, H., Ou, C., Zheng, Z., Zhang, X., Liu, Y., ... & Wang, L. X. (2023). Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody–Drug Conjugates. Antibodies, 12(4), 71. https://www.mdpi.com/2073-4468/12/4/71 |
BP-25659 | DBCO-PEG4-Val-Cit-PAB-MMAE | Bernstein, Z. J., Gierke, T. R., Dammen-Brower, K., Tzeng, S. Y., Zhu, S., Chen, S. S., ... & Spangler, J. B. (2024). Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. Journal of Biological Chemistry, 300(12). https://www.jbc.org/article/S0021-9258(24)02507-9/fulltext |
BP-20417 | Bis-PEG5-PFP ester | Anouk D, Mark M, Giuseppe DI, et al. Parallel Synthesis and Screening of Peptide Conjugates. Bioconjugate Chemistry. 2014; 25(6): pp. 1052-1060. https://pubs.acs.org/doi/pdf/10.1021/bc500129w |
BP-22252 | Amino-PEG9-amine | Elijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743. https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf |
BP-22254 | Amino-PEG11-amine | Elijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743. https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf |
BP-22586 | Amino-PEG7-amine | Elijah LT, Kevin JM, Benedetta C, et al. Long-Range Energy Transfer in Protein Megamolecules. Journal of the American Chemical Society. 2018; 140(46): pp. 15731-15743. https://pubs.acs.org/doi/suppl/10.1021/jacs.8b08208/suppl_file/ja8b08208_si_001.pdf |
BP-24161 | PC Biotin-PEG3-NHS carbonate ester | Gupta R, Goddard NJ Reflective leaky waveguide gratings (LWGs) with internal referencing for sensing. Royal Society of Chemistry. 2022 https://pubs.rsc.org/en/content/articlehtml/2022/sd/d1sd00061f |
BP-24161 | PC Biotin-PEG3-NHS carbonate ester | Gupta, Ruchi, and Nicholas J. Goddardb. Sensors & Diagnostics. Royal Society of Chemistry. 2022 https://scholar.archive.org/work/74clr45l4bfrbnljdvdkktpw2y/access/wayback/https://pubs.rsc.org/en/content/articlepdf/2022/sd/d1sd00061f |
BP-21072 | m-PEG4-bromide | Ramos-Garcés, Mario V., Dodangodage Ishara Senadheera, Karthik Arunagiri, Polyxeni P. Angelopoulou, Georgios Sakellariou, Ke Li, Bryan D. Vogt, Revati Kumar, and Christopher G. Arges Ion transport on self-assembled block copolymer electrolytes with different side chain chemistries.. Materials Advances. 2022 https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f |
BP-21663 | Bromo-PEG3-bromide | Park, S., Dahn, R.D., Kurt, E., Presle, A., VandenHeuvel, K., Moravec, C., Jambhekar, A., Olukoga, O., Shepherd, J., Echard, A. and Blower, M. The Midbody and Midbody Remnant are Assembly Sites for RNA and Localized Translation.. SSRN. 2023 https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f |
BP-21663 | Bromo-PEG3-bromide | Ramos-Garcés, Mario V., Dodangodage Ishara Senadheera, Karthik Arunagiri, Polyxeni P. Angelopoulou, Georgios Sakellariou, Ke Li, Bryan D. Vogt, Revati Kumar, and Christopher G. Arges Ion transport on self-assembled block copolymer electrolytes with different side chain chemistries.. Materials Advances. 2023 https://pubs.rsc.org/en/content/articlehtml/2023/ma/d2ma00919f |
BP-22221 | Acid-PEG9-NHS ester | Meisam OM and Lobat T. Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery. RSC Adv. 2019, 9, 33246-33256. https://pubs.rsc.org/en/content/articlepdf/2019/ra/c9ra06279c |
BP-21075 | Azide-PEG8-alcohol | Haifei G, Cristine G, et al. Comparative binding and uptake of liposomes decorated with mannose oligosaccharides by cells expressing the mannose receptoror DC-SIGN. Carbohydrate Research. 2020. 487, 107877. https://reader.elsevier.com/reader/sd/pii/S0008621519305105?token=7CAF93C4D30DCD0256B8ECE3919DE5F0DF3DCA297E84C447308093BDB6649E47CB0B4508EAB9586DCAD2230001FCE6C7 |
BP-22608 | Biotin-PEG2-NHS ester | de Wispelaere M, Lian W, et al. Inhibition of Flaviviruses by Targeting a ConservedPocket on the Viral Envelope Protein. Cell chemical biology. 2018. 25(8). 1006-1016.. https://reader.elsevier.com/reader/sd/pii/S245194561830182X?token=2DA6CDAF6BED1FD47C60419A7D5264B7E7BF127910AA0F31B158EAB3B9884D4733C27777F28F1C5F5F426747C72C5734 |
BP-20718 | Bis-propargyl-PEG7 | Tobola F, Sylvander E, et al. ‘Clickable lectins’: bioorthogonal reactive handles facilitate the directed conjugation of lectins in a modular fashion. The Royal Society. 2019. 9(2). https://royalsocietypublishing.org/doi/full/10.1098/rsfs.2018.0072 |
BP-20718 | Bis-propargyl-PEG7 | Eleonora V, Andreas R, Philipp H, et al. New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget. 2018 Jan 12; 9(4): 5301–5320. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797051/ |
BP-22559 | Cy5 amine | YueYu, Guoxin Zhang, Zhongping Li, Jia Wang, Yang Liu, Rahul Bhardwaj, Renu Wadhwa, Yuki Nagao, Mototada Shichiri, and Ran Gao Designed Fabrication ofActive Tumor Targeting Covalent Organic Framework Nanotherapeutics via a Simple Post-Synthetic Strategy. Nano Research. 2022 https://sciopen.com/article/10.1007/s12274-022-5265-7 |
BP-22559 | Cy5 amine | Euliano, E. M., Agrawal, A., Yu, M. H., Graf, T. P., Henrich, E. M., Kunkel, A. A., & McHugh, K. J. (2024). Intra-Lymph Node Crosslinking of Antigen-Bearing Polymers Enhances Humoral Immunity and Dendritic Cell Activation. bioRxiv, 2024-03. https://www.biorxiv.org/content/10.1101/2024.03.13.584831v1.abstract |
BP-20580 | Azido-PEG3-amine | Osuofa, J. (2023). Protein A and Multimodal Anion-Exchange Membrane Adsorbers for Downstream Purification of Therapeutic Biomolecules. https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4408&context=all_dissertations |
BP-20580 | Azido-PEG3-amine | Osuofa, J., & Husson, S. M. (2023). Preparation of Protein A Membrane Adsorbers Using Strain-Promoted, Copper-Free Dibenzocyclooctyne (DBCO)-Azide Click Chemistry. Membranes, 13(10), 824. https://www.mdpi.com/2077-0375/13/10/824 |
BP-20580 | Azido-PEG3-amine | Wilson, J., Kimmel, B., Arora, K., Chada, N., Bharti, V., Kwiatkowski, A., ... & Hargrove-Wiley, E. (2024). Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. Research Square. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100900/ |
BP-20580 | Azido-PEG3-amine | Bina, M., Coats, J. P., Skowicki, M., Malekovic, M., Mihali, V., & Palivan, C. G. (2024). Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. Langmuir, 40(44), 23178-23188. https://pubs.acs.org/doi/10.1021/acs.langmuir.4c02110 |
BP-20580 | Azido-PEG3-amine | Romanov, A., Knappe, G. A., Ronsard, L., Suh, H., Omer, M., Chapman, A. P., ... & Irvine, D. J. (2025). DNA origami vaccines program antigen-focused germinal centers. bioRxiv, 2025-02. https://doi.org/10.1101/2025.02.21.639354 |
BP-24157 | TCO-PEG8-NHS ester | Hast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2020 https://www.biorxiv.org/content/10.1101/2021.10.01.462811v0 |
BP-24157 | TCO-PEG8-NHS ester | Hast K, Jia Z, et al. Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2021. https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1 |
BP-22435 | Methyltetrazine-PEG4-amine HCl salt | Hast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2021 https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1 |
BP-22435 | Methyltetrazine-PEG4-amine HCl salt | Jia, T., Saikam, V., Luo, Y., Sheng, X., Fang, J., Kumar, M., & Iyer, S. S. (2024). Combining Bioorthogonal Chemistry with Fluorescent Silica Nanoparticles for the Ultrasensitive Detection of the HIV-1 p24 Antigen. ACS omega, 9(12), 14604-14612. https://doi.org/10.1021/acsomega.3c06136 |
BP-24087 | TCO-PEG24-acid | Hast K, Jia Z, et al Bioorthogonal Functionalization of Material Surfaces with Bioactive Molecules. bioRxiv. 2019 https://www.biorxiv.org/content/10.1101/2021.10.01.462811v1 |
BP-22572 | Cy3 hydrazide | Hayashi S, Iwamoto K, et al Puf3p facilitates fermentative mitochondrial functions via monosome-enriched nuclear-encoded mitochondrial mRNAs in budding yeast. bioRxiv. 2022. https://www.biorxiv.org/content/10.1101/2022.04.10.487782v1.abstract |
BP-23775 | Cy5 DBCO | Tsuchiya M, Tachibana N, et al Organelle-selective click labeling coupled with flow cytometry allows high-throughput CRISPR screening of genes involved in phosphatidylcholine metabolism. bioRxiv. 2021 https://www.biorxiv.org/content/10.1101/2022.04.18.488621v1.abstract |
BP-23775 | Cy5 DBCO | Rakotoarinoro, N., Dyck, Y. F., Krebs, S. K., Assi, M. K., Parr, M. K., & Stech, M. (2023). A disruptive clickable antibody design for the generation of antibody-drug conjugates. Antibody Therapeutics, 6(4), 298-310. https://academic.oup.com/abt/article/6/4/298/7330544 |
BP-23775 | Cy5 DBCO | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-22467 | Azidoacetic acid NHS ester | Piranej, Selma, Luona Zhang, Alisina Bazrafshan, Mariana Marin, Gregory B. Melikyan, and Khalid Salaita. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor.. bioRxiv. 2023 https://www.biorxiv.org/content/10.1101/2023.02.27.530294v1.full.pdf |
BP-22467 | Azidoacetic acid NHS ester | Velusamy, A., Sharma, R., Rashid, S. A., Ogasawara, H., & Salaita, K. (2024). DNA mechanocapsules for programmable piconewton responsive drug delivery. Nature Communications, 15(1), 704. https://www.nature.com/articles/s41467-023-44061-w |
BP-22467 | Azidoacetic acid NHS ester | Piranej, S., Ogasawara, H., Zhang, L., Jackson, K., Bazrafshan, A., & Salaita, K. (2025). On-Demand Photoactivation of DNA-Based Motor Motion. ACS nano. https://pubs.acs.org/doi/full/10.1021/acsnano.4c13068 |
BP-22289 | DBCO-Sulfo-NHS ester | Gwisai, Tinotenda, Sina Guenther, Matej Vizovisek, Mira Jacobs, and Simone Schuerle Engineering living immunotherapeutic agents for improved cancer treatment. bioRxiv. 2023 https://www.biorxiv.org/content/10.1101/2023.03.31.535049v1.full.pdf |
BP-22289 | DBCO-Sulfo-NHS ester | Takeuchi, Y., Ushimaru, K., Kaneda, K. et al. First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria. COMMUNICATIONS Biology. 2022 Article 5 https://www.nature.com/articles/s42003-022-04110-4#citeas |
BP-22289 | DBCO-Sulfo-NHS ester | Goldbloom-Helzner, L., Bains, H., Loll, E. G., Henson, T., Mizenko, R. R., Kumar, P., ... & Wang, A. (2024). Assessing the conjugation efficiency of surface-modified extracellular vesicles using single nanovesicle analysis technologies. Nanoscale, 16(45), 20903-20916. https://pubs.rsc.org/en/content/articlehtml/2024/nr/d4nr01603c |
BP-22397 | DNP-PEG12-NHS ester | Rinaldi, D. A., Kanagy, W. K., Kaye, H. C., Grattan, R. M., Lucero, S. R., Perez, M. P., ... & Lidke, D. S. (2023). Antigen Geometry Tunes Mast Cell Signaling Through Distinct Fc?RI Aggregation and Structural Changes. bioRxiv, 2023-08. https://www.biorxiv.org/content/10.1101/2023.08.04.552060v1.full |
BP-22453 | DBCO-S-S-PEG3-biotin | Norton, E. S., Whaley, L. A., Jones, V. K., Brooks, M. M., Russo, M. N., Morderer, D., ... & Guerrero-Cazares, H. (2023). Cell-specific crosstalk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. bioRxiv, 2023-08. https://www.biorxiv.org/content/10.1101/2023.08.19.553966v1.full |
BP-22453 | DBCO-S-S-PEG3-biotin | Burgess, J.D., Amerna, D., Norton, E.S. et al. A mutant methionyl-tRNA synthetase-based toolkit to assess induced-mesenchymal stromal cell secretome in mixed-culture disease models. Stem Cell Res Ther 14, 289 (2023). https://doi.org/10.1186/s13287-023-03515-0 https://link.springer.com/article/10.1186/s13287-023-03515-0#citeas |
BP-25635 | N-(acid-PEG10)-N-bis(PEG10-azide) | Anderson, D. M., Logan, M. G., Patty, S. S., Kendall, A. J., Borland, C. Z., Pfeifer, C. S., ... & Merritt, J. L. (2023). Microbiome imaging goes à la carte: Incorporating click chemistry into the fluorescence-activating and absorption-shifting tag (FAST) imaging platform. bioRxiv, 2023-10. https://www.biorxiv.org/content/10.1101/2023.10.02.560575v1.full |
BP-22355 | Amino-PEG5-alcohol | Afsahi SJ, Locascio LE, et al. Towards Novel Graphene-Enabled Diagnostic Assays with Improved Signal-to-Noise Ratio. MRS Advances. 2017. 2(60). pp. 3733-3739. https://www.cambridge.org/core/journals/mrs-advances/article/towards-novel-grapheneenabled-diagnostic-assays-with-improved-signaltonoise-ratio/A507A69B296FF625258662B032C46A80 |
BP-22355 | Amino-PEG5-alcohol | Goldsmith BR, Locascio L, et al. Digital Biosensing by FoundryFabricated Graphene Sensors. Scientific reports. 2019. 9(434). https://www.nature.com/articles/s41598-019-38700-w.pdf |
BP-22355 | Amino-PEG5-alcohol | Goldsmith BR, Locascio L, et al. Digital Biosensing by Foundry-Fabricated Graphene Sensors. Scientific Reports. 2017. 12(6). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342992/ |
BP-25703 | (S, R, S)-AHPC-PEG6-NHS ester | Zhao, Nan, Jessica Sook Yuin Ho, Fanye Meng, Simin Zheng, Andrew P. Kurland, Lu Tian, Martha Rea-Moreno Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host & Microbe . 2023 https://www.cell.com/cell-host-microbe/pdfExtended/S1931-3128(23)00223-8 |
BP-22542 | BDP FL azide | Noritsugu, Kota, Takehiro Suzuki, Kosuke Dodo, Kenji Ohgane, Yasue Ichikawa, Kota Koike, Satoshi Morita et al. Lysine long-chain fatty acylation regulates the TEAD transcription factor. Cell Reports. 2023 https://www.cell.com/cell-reports/pdf/S2211-1247(23)00399-6.pdf |
BP-22538 | Cy7 NHS ester | Morishita, M., Nagata, R., Maruoka, K., Higuchi, A., Sasaki, S., Wada, S., ... & Yamamoto, A. (2023). Lymphatic Transport and Immune Activation Effect by Locally Administered Extracellular Vesicles from Saccharomyces cerevisiae as Biocompatible Vaccine Adjuvants. Biological and Pharmaceutical Bulletin, 46(10), 1427-1434. https://www.jstage.jst.go.jp/article/bpb/46/10/46_b23-00282/_pdf/-char/en |
BP-22801 | PEG11 | Mahalingam SM, Putt KS, et al. Design of a Near Infrared Fluorescent Ureter Imaging Agent for Prevention of Ureter Damage during Abdominal Surgeries. molecules. 2021. 26(12). pp. 3739. https://www.mdpi.com/1420-3049/26/12/3739 |
BP-24414 | Amino-PEG4-Val-Cit-PAB-MMAE | Zhang, Chaoyu, Wenjie Sheng, Marwah Al-Rawe, T. M. Mohiuddin, Marcus Niebert, Felix Zeppernick, Ivo Meihold-Heerlein, and Ahmad Fawzi Hussain. https://www.mdpi.com/1422-0067/23/11/6122/htm |
BP-22274 | Cy5 acid | Lee SH, Kim S, et al. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. International Journal of Molecular Sciences. 2022. 23(2). pp. 1004. https://www.mdpi.com/1422-0067/23/2/1004 |
BP-22274 | Cy5 acid | McBride, D. A. (2023). Design and Applications of Immunoregulatory Biomaterials in Autoimmune Disease (Doctoral dissertation, University of California, San Diego). https://www.proquest.com/openview/ffda0eea9a5581770696fe76e7bae253/1?pq-origsite=gscholar&cbl=18750&diss=y |
BP-22274 | Cy5 acid | Naito M, Chaya H, et al Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(L-lysine). Journal of Controlled Release. 2021. (330). pp. 812-820 https://www.sciencedirect.com/science/article/abs/pii/S0168365921000018 |
BP-22274 | Cy5 acid | Johnson, W. T., McBride, D., Kerr, M., Nguyen, A., Zoccheddu, M., Bollmann, M., ... & Shah, N. J. (2024). Immunomodulatory Nanoparticles for Modulating Arthritis Flares. ACS nano. https://pubs.acs.org/doi/abs/10.1021/acsnano.3c05298 |
BP-20517 | Azido-PEG4-acid | Tallon, Carolyn, Benjamin J. Bell, Anjali Sharma, Arindom Pal, Medhinee M. Malvankar, Ajit G. Thomas, Seung-Wan Yoo et al. Dendrimer-Conjugated nSMase2 Inhibitor Reduces Tau Propagation in Mice. Pharmaceutics. 2022 https://www.mdpi.com/1999-4923/14/10/2066 |
BP-20517 | Azido-PEG4-acid | Tallon, Carolyn; Bell, Benjamin J; Sharma, Anjali; Pal, Arindom; Malvankar, Medhinee M; et al. Dendrimer-Conjugated nSMase2 Inhibitor Reduces Tau Propagation in Mice. Pharmaceutics. 2022 Vol 12, Iss 10 https://www.proquest.com/openview/1fb23c42177a78fb789c1971290de0ae/1?pq-origsite=gscholar&cbl=2032349 |
BP-20517 | Azido-PEG4-acid | Owoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University). https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y |
BP-20517 | Azido-PEG4-acid | Bataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486 |
BP-20517 | Azido-PEG4-acid | Owoseni, O. B., Adekiya, T. A., Akinboye, E. S., & Adesina, S. K. (2025). Development of a Prostate-Specific Antigen Targeted Dual Drug Conjugate for Prostate Cancer Therapy. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.4c11483 |
BP-23310 | Sulfo DBCO-PEG4-amine | Porcello A, Gonzalez-Fernandez P, et al Nanoforming Hyaluronan-Based Thermoresponsive Hydrogels: Optimized and Tunable Functionality in Osteoarthritis Management. Pharmaceutics. 2022. 14(3). pp. 659 https://www.mdpi.com/1999-4923/14/3/659 |
BP-23310 | Sulfo DBCO-PEG4-amine | Porcello, Alexandre, Paula Gonzalez-Fernandez, Annick Jeannerat, Cédric Peneveyre, Philippe Abdel-Sayed, Corinne Scaletta, Wassim Raffoul Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics . 2023 https://www.mdpi.com/1999-4923/15/5/1528 |
BP-22851 | endo-BCN-PEG4-NHS ester | Jiang, Yaqun, Yu Long, Hao Ji, Pengxin Qiao, Qingyao Liu, Xiaotian Xia, Chunxia Qin, Yongxue Zhang, Xiaoli Lan, and Yongkang Gai Development and Evaluation of a Peptide Heterodimeric Tracer Targeting CXCR4 and Integrin αvβ3 for Pancreatic Cancer Imaging. Pharmaceutics. 2022 https://www.mdpi.com/1999-4923/14/9/1791/htm |
BP-22851 | endo-BCN-PEG4-NHS ester | Kim, H. S., & Zhang, Y. (2023). Generation of Bispecific Antibodies by Functionalized Poly?ADP?Ribose Polymers. Current Protocols, 3(12), e958. https://currentprotocols.onlinelibrary.wiley.com/doi/full/10.1002/cpz1.958 |
BP-23368 | Azido-PEG3-Val-Cit-PAB-PNP | Gonzalez, Paulina, Sashi Debnath, Yu-An Chen, Elizabeth Hernandez, Preeti Jha, Marianna Dakanali, Jer-Tsong Hsieh, and Xiankai Sun. A Theranostic Small-Molecule Prodrug Conjugate for Neuroendocrine Prostate Cancer. Pharaceutics. 2023 https://www.mdpi.com/1999-4923/15/2/481?trk=organization_guest_main-feed-card-text |
BP-23969 | MC-Val-Cit-PAB-MMAE | Esteban C and Veysel K. Synthesis and Enhanced Cellular Uptake In Vitro of Anti-HER2 Multifunctional Gold Nanoparticles. Cancers. 2019 June; 11(6): pp. 870. https://www.mdpi.com/2072-6694/11/6/870 |
BP-23969 | MC-Val-Cit-PAB-MMAE | Roberts, S. E., Martin, H. L., Al-Qallaf, D., Tang, A. A., Tiede, C., Gaule, T. G., ... & Tomlinson, D. C. (2024). Affimer reagents enable targeted delivery of therapeutic agents and RNA via virus-like particles. Iscience, 27(8). https://www.cell.com/iscience/fulltext/S2589-0042(24)01686-9 |
BP-23969 | MC-Val-Cit-PAB-MMAE | Nervig, C. S., Rice, M., Marelli, M., Christie, R. J., & Owen, S. C. (2025). Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity. Bioconjugate Chemistry. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00398 |
BP-21638 | t-Boc-N-amido-PEG8-acid | Chen Y, Minn I, et al A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules. 2022. 12(3). 405 https://www.mdpi.com/2218-273X/12/3/405 |
BP-21638 | t-Boc-N-amido-PEG8-acid | Piranej, Selma, Alisina Bazrafshan, and Khalid Salaita. Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic. Nature Nanotechnology 17, no. 5. 2022 https://www.mdpi.com/2218-273X/12/3/405/pdf?version=1647317529 |
BP-23302 | Mal-PEG8-NHS ester | Bulut, Aliye, Betul Z. Temur, Ceyhun E. Kirimli, Ozgul Gok, Bertan K. Balcioglu, Hasan U. Ozturk, Neval Y. Uyar, Zeynep Kanlidere, Tanil Kocagoz, and Ozge Can A Novel Peptide-Based Detection of SARS-CoV-2 Antibodies. Biomimetics. 2023 https://www.mdpi.com/2313-7673/8/1/89 |
BP-22774 | Aminooxy-PEG3-propargyl | Kostka, Kathrin, and Matthias Epple. Surface Functionalization of Calcium Phosphate Nanoparticles via Click Chemistry: Covalent Attachment of Proteins and Ultrasmall Gold Nanoparticles.. Chemistry 5. 2023 https://www.mdpi.com/2624-8549/5/2/72 |
BP-22774 | Aminooxy-PEG3-propargyl | Damm D, Kostka K, et al. Covalent coupling of HIV-1 glycoprotein trimers to biodegradable calcium phosphate nanoparticles via genetically encoded aldehyde-tags. Acta Biomaterialia. 2022. 140. pp. 586-600. https://www.sciencedirect.com/science/article/pii/S1742706121008291 |
BP-23354 | PC Mal-NHS carbonate ester | Palluk S, Arlow DH, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nature Biotechnology. 2018. 36. pp. 645-650. https://www.nature.com/articles/Nbt.4173 |
BP-21880 | Amino-PEG16-acid | Zhao Z, Chen C, et al Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1304 https://www.nature.com/articles/s41467-021-22585-2 |
BP-21880 | Amino-PEG16-acid | Zhao Z, Chen C, et al. Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1305. https://www.nature.com/articles/s41467-021-22585-3 |
BP-21502 | Amino-PEG8-alcohol | Zhao Z, Chen C, et al. Ultra-bright Raman dots for multiplexed optical imaging. Nature Communications. 2021. 12. 1305. https://www.nature.com/articles/s41467-021-22585-3 |
BP-21832 | Bis-PEG1-NHS ester | Wang JF, Tang YL, et al Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nature Communications. 2022. 13. 1468 https://www.nature.com/articles/s41467-022-28879-4 |
BP-24093 | Ald-Ph-PEG24-NHS ester | Petitjean, Simon JL, Wenzhang Chen, Melanie Koehler, Ravikumar Jimmidi, Jinsung Yang, Danahe Mohammed, Blinera Juniku et al Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection.. Nature communications 13, no. 1. 2022 https://www.nature.com/articles/s41467-022-30313-8 |
BP-24093 | Ald-Ph-PEG24-NHS ester | Shang, Pengcheng, Joshua D. Simpson, Gwen M. Taylor, Danica M. Sutherland, Olivia L. Welsh, Pavithra Aravamudhan, Rita Dos Santos Natividade Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nature Communications. 2023 https://www.nature.com/articles/s41467-023-38327-6 |
BP-24093 | Ald-Ph-PEG24-NHS ester | Paiva, Telmo O., Joan A. Geoghegan, and Yves F. Dufrêne High-force catch bonds between the Staphylococcus aureus surface protein SdrE and complement regulator factor H drive immune evasion. COMMUNICATIONS Biology. 2023 https://www.nature.com/articles/s42003-023-04660-1 |
BP-24093 | Ald-Ph-PEG24-NHS ester | Viljoen, Albertus, Alain Vercellone, Myriam Chimen, Gérald Gaibelet, Serge Mazères, Jérôme Nigou, and Yves F. Dufrêne Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition.. Science Advances. 2023 https://www.science.org/doi/full/10.1126/sciadv.adf9498 |
BP-24093 | Ald-Ph-PEG24-NHS ester | Zhang, Q., Rosa, R. S., Ray, A., Durlet, K., Dorrazehi, G. M., Bernardi, R. C., & Alsteens, D. (2025). Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nature Communications, 16(1), 6. https://www.nature.com/articles/s41467-024-55358-9 |
BP-20566 | Biotin-PEG4-NHS ester | Jami, Sina, Jennifer R. Deuis, Tabea Klasfauseweh, Xiaoyang Cheng, Sergey Kurdyukov, Felicity Chung, Andrei L. Okorokov Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1. 7 function.. Nature Communications. 2023 https://www.nature.com/articles/s41467-023-37963-2 |
BP-20566 | Biotin-PEG4-NHS ester | Kolanovic, D., Pasupuleti, R., Wallner, J., Mlynek, G., & Wiltschi, B. (2024). Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Bioconjugate Chemistry, 35(12), 1944-1958. https://pubs.acs.org/doi/full/10.1021/acs.bioconjchem.4c00467 |
BP-25553 | BP Fluor 488 Alkyne | Jami, Sina, Jennifer R. Deuis, Tabea Klasfauseweh, Xiaoyang Cheng, Sergey Kurdyukov, Felicity Chung, Andrei L. Okorokov Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1. 7 function.. Nature Communications. 2023 https://www.nature.com/articles/s41467-023-37963-2 |
BP-22505 | Azido-PEG4-beta-D-glucose | Yoshikawa, Alex M., Alexandra E. Rangel, Liwei Zheng, Leighton Wan, Linus A. Hein, Amani A. Hariri, Michael Eisenstein, and H. Tom Soh. A massively parallel screening platform for converting aptamers into molecular switches.. Nature Communications. 2023 https://www.nature.com/articles/s41467-023-38105-4 |
BP-26809 | LP01 | Gautam, M., Jozic, A., Su, G. L. N., Herrera-Barrera, M., Curtis, A., Arrizabalaga, S., ... & Sahay, G. (2023). Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nature Communications, 14(1), 6468. https://www.nature.com/articles/s41467-023-42189-3 |
BP-22826 | Biotin-PEG3-amine | Rogowski, L.W., Kim, M.J. spontaneous symmetry breaking propulsion of chemically coated magnetic microparticles. Scientific Report. 2022 Article #17646 https://www.nature.com/articles/s41598-022-21725-z#citeas |
BP-22826 | Biotin-PEG3-amine | Blazic, M., Gautier, C., Norberg, T., & Widersten, M. (2024). High-throughput selection of (new) enzymes: phage display-mediated isolation of alkyl halide hydrolases from a library of active-site mutated epoxide hydrolases. Faraday discussions. https://pubs.rsc.org/en/content/articlehtml/2024/fd/d4fd00001c |
BP-22616 | Bis-Mal-Lysine-PEG4-acid | Sahsuvar, Seray, Tanil Kocagoz, Ozgul Gok, and Ozge Can In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. Scientific Reports. 2023 https://www.nature.com/articles/s41598-023-38449-3 |
BP-24070 | DOTA-PEG5-C6-DBCO | Kiyoshi, M., Nakakido, M., Rafique, A., Tada, M., Aoyama, M., Terao, Y., ... & Ishii-Watabe, A. (2023). Specific peptide conjugation to a therapeutic antibody leads to enhanced therapeutic potency and thermal stability by reduced Fc dynamics. Scientific Reports, 13(1), 16561. https://www.nature.com/articles/s41598-023-43431-0 |
BP-21619 | Biotin-PEG12-NHS ester | Mathieu S, Fabian S, Thomas RWM et al. 1 On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. COMMUNICATIONS CHEMISTRY. 2018; 1: 84. https://www.nature.com/articles/s42004-018-0087-y.pdf |
BP-21655 | Bromo-PEG5-bromide | Vighi E, Rentsch A, et al. New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget. 2018. 9(4). 5301–5320.. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797051/ |
BP-22558 | Cy3 amine | Camacho P, Fainor M, et al. Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. Journal of Biological Methods. 2021. 8(1). e146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054918/ |
BP-22117 | Biotin-PEG8-NHS ester | Xie M, Yu X, et al Biocompatible surface functionalization architecture for a diamond quantum sensor. Applied Physical Sciences. 2022. 119(8). e2114186119 https://www.pnas.org/doi/10.1073/pnas.2114186119 |
BP-23165 | Propargyl-PEG2-acid | Sun B, Willard FS, et al Structural determinants of dual incretin receptor agonism by tirzepatide. PNAS. 2022. 119(13). e2116506119. https://www.pnas.org/doi/abs/10.1073/pnas.2116506119 |
BP-23165 | Propargyl-PEG2-acid | Zhang, Z., Zeng, J., & Matsusaki, M. (2024). Fabrication of Fully Positively Charged Layer-by-Layer Polyelectrolyte Nanofilms with pH-Dependent Swelling Properties. Langmuir, 40(30), 15588-15596. https://doi.org/10.1021/acs.langmuir.4c01327 |
BP-22287 | DBCO-C6-acid | Owoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University). https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y |
BP-22287 | DBCO-C6-acid | Bataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486 |
BP-22287 | DBCO-C6-acid | Moore, W. M., Brea, R. J., Knittel, C., Wrightsman, E., Hui, B., Loui, J., ... & Budin, I. (2024). Subcellular imaging of lipids and sugars using genetically encoded proximity sensors. bioRxiv, 2024-05. https://doi.org/10.1101/2024.05.01.592120 |
BP-22287 | DBCO-C6-acid | Owoseni, O. B., Adekiya, T. A., Akinboye, E. S., & Adesina, S. K. (2025). Development of a Prostate-Specific Antigen Targeted Dual Drug Conjugate for Prostate Cancer Therapy. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.4c11483 |
BP-23954 | Cabazitaxel | Owoseni, O. B. (2023). Development of Dual-Drug Conjugate Loaded Nanoparticle Platform for Site-Specific Delivery to Prostate Cancer (Doctoral dissertation, Howard University). https://www.proquest.com/openview/39bd0b22805503b3d4b4fd4d10d03dda/1?pq-origsite=gscholar&cbl=18750&diss=y |
BP-23954 | Cabazitaxel | Owoseni, O. B., Adekiya, T. A., Akinboye, E. S., & Adesina, S. K. (2025). Development of a Prostate-Specific Antigen Targeted Dual Drug Conjugate for Prostate Cancer Therapy. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.4c11483 |
BP-25499 | SM-102 | Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023 https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf |
BP-25499 | SM-102 | Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023 https://www.researchsquare.com/article/rs-2649244/v1 |
BP-25499 | SM-102 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-25499 | SM-102 | Binici, B., Rattray, Z., Schroeder, A., & Perrie, Y. (2024). The role of biological sex in pre-clinical (mouse) mRNA vaccine studies. Vaccines, 12(3), 282. https://doi.org/10.3390/vaccines12030282 |
BP-25499 | SM-102 | Ruppl, A., Kiesewetter, D., Strütt, F., Köll-Weber, M., Süss, R., & Allmendinger, A. (2024). Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 198, 114265. https://www.sciencedirect.com/science/article/pii/S0939641124000912 |
BP-25499 | SM-102 | Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728. https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6 |
BP-25499 | SM-102 | Bhattacharya, A., Jan, L., Burlak, O., Li, J., Upadhyay, G., Williams, K., ... & Dey, A. K. (2024). Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. npj Vaccines, 9(1), 72. https://www.nature.com/articles/s41541-024-00865-5 |
BP-25499 | SM-102 | Meulewaeter, S., Aernout, I., Deprez, J., Engelen, Y., De Velder, M., Franceschini, L., ... & Lentacker, I. (2024). Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. Journal of Controlled Release, 370, 379-391. https://www.sciencedirect.com/science/article/pii/S0168365924002815 |
BP-25499 | SM-102 | De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208 |
BP-25499 | SM-102 | Buckley, M., Arainga, M., Maiorino, L., Pires, I. S., Kim, B. J., Kaczmarek Michaels, K., ... & Irvine, D. J. (2024). Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. bioRxiv, 2024-06. https://doi.org/10.1101/2024.06.21.600088 |
BP-25499 | SM-102 | Shah, N., Soma, S. R., Quaye, M. B., Mahmoud, D., Ahmed, S., Malkoochi, A., & Obaid, G. (2024). A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin–Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS Applied Bio Materials. https://pubs.acs.org/doi/full/10.1021/acsabm.4c00316 |
BP-25499 | SM-102 | Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2024). Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. bioRxiv, 2024-07. https://doi.org/10.1101/2024.07.05.602305 |
BP-25499 | SM-102 | Saraswat, A., Vemana, H. P., Dukhande, V., & Patel, K. (2024). Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. Molecular Therapy-Nucleic Acids, 35(3). https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00179-3 |
BP-25499 | SM-102 | Ogawa, K., Aikawa, O., Tagami, T., Ito, T., Tahara, K., Kawakami, S., & Ozeki, T. (2024). Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. International Journal of Pharmaceutics, 124632. https://www.sciencedirect.com/science/article/abs/pii/S0378517324008664 |
BP-25499 | SM-102 | Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763. https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433 |
BP-25499 | SM-102 | Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583. https://academic.oup.com/jpp/article/76/12/1572/7816331 |
BP-25499 | SM-102 | McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics. https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a |
BP-25499 | SM-102 | Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV. https://lib.ugent.be/catalog/rug01:003212736 |
BP-25499 | SM-102 | Binici, B., Borah, A., Watts, J. A., McLoughlin, D., & Perrie, Y. (2025). The influence of citrate buffer molarity on mRNA-LNPs: Exploring factors beyond general critical quality attributes. International Journal of Pharmaceutics, 668, 124942. https://doi.org/10.1016/j.ijpharm.2024.124942 |
BP-25499 | SM-102 | Ho?ubowicz, R., Du, S. W., Felgner, J., Smidak, R., Choi, E. H., Palczewska, G., ... & Palczewski, K. (2024). Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nature Biomedical Engineering, 1-22. https://www.nature.com/articles/s41551-024-01296-2 |
BP-25499 | SM-102 | Banda, O., Adams, S. E., Omer, L., Jung, S. K., Said, H., Phoka, T., ... & Kurre, P. (2025). Restoring hematopoietic stem and progenitor cell function in Fancc−/− mice by in situ delivery of RNA lipid nanoparticles. Molecular Therapy Nucleic Acids, 36(1). https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00310-X |
BP-25499 | SM-102 | Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109. https://www.sciencedirect.com/science/article/pii/S0378517324013437 |
BP-25499 | SM-102 | Ruppl, A., Kiesewetter, D., Koell-Weber, M., Lemazurier, T., Süss, R., & Allmendinger, A. (2025). Formulation screening of lyophilized mRNA-lipid nanoparticles. International Journal of Pharmaceutics, 125272. https://www.sciencedirect.com/science/article/pii/S0378517325001085 |
BP-25499 | SM-102 | Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24. https://www.nature.com/articles/s41541-025-01079-z |
BP-25499 | SM-102 | Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367. https://doi.org/10.1016/j.ijpharm.2025.125367 |
BP-25499 | SM-102 | Jalili, S., Hosn, R. R., Ko, W. C., Afshari, K., Dhinakaran, A. K., Chaudhary, N., ... & Irvine, D. J. (2025). Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. medRxiv, 2025-03. https://doi.org/10.1101/2025.03.17.25324099 |
BP-25499 | SM-102 | Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339. https://www.mdpi.com/2076-393X/13/4/339 |
BP-25499 | SM-102 | Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370. https://www.mdpi.com/2076-393X/13/4/370 |
BP-25499 | SM-102 | Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2025). Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. Science Advances, 11(15), eadr2631. https://www.science.org/doi/full/10.1126/sciadv.adr2631 |
BP-25499 | SM-102 | Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.21.649878 |
BP-25499 | SM-102 | Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566. https://www.mdpi.com/1999-4923/17/5/566 |
BP-25499 | SM-102 | Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726. https://doi.org/10.1016/j.ejpb.2025.114726 |
BP-24160 | TCO-PEG4-DBCO | Rosato, Francesca, Rajeev Pasupuleti, Jana Tomisch, Ana Valeria Meléndez, Dajana Kolanovic, Olga N. Makshakova, Birgit Wiltschi, and Winfried Römer A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death.. Research Square. 2022 https://www.researchsquare.com/article/rs-2056554/latest.pdf |
BP-24160 | TCO-PEG4-DBCO | Mu, W., Chen, Y., Zhong, Z., Louage, B., Lauwers, H., Devoogdt, N., ... & De Geest, B. G. (2024). HER2 Nanobody-Poly (rhamnose) Conjugates Efficiently Recruit Anti-Rhamnose Antibodies from Serum to the Surface of HER2-Expressing Cells. Chemistry of Materials, 36(20), 10113-10124. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.4c01500 |
BP-25564 | BP Fluor 555 Azide | Skop, Ahna, Sungjin Park, Randall Dahn, Elif Kurt, Adrien Presle, Kathryn VandenHeuvel, Cara Moravec et al. The midbody and midbody remnant are assembly sites for RNA and active translation. Research Square. 2022 https://www.researchsquare.com/article/rs-2256478/latest.pdf |
BP-25564 | BP Fluor 555 Azide | Park, S., Dahn, R., Kurt, E., Presle, A., VanDenHeuvel, K., Moravec, C., ... & Skop, A. R. (2023). The mammalian midbody and midbody remnant are assembly sites for RNA and localized translation. Developmental cell, 58(19), 1917-1932. https://www.cell.com/developmental-cell/pdf/S1534-5807(23)00357-X.pdf |
BP-23466 | BDP FL-PEG5-azide | Nakagami, Satoru, Michitaka Notaguchi, Tatsuhiko Kondo, Satoru Okamoto, Takanori Ida, Yoshikatsu Sato, Tetsuya Higashiyama, Allen Yi-Lun Tsai, Takashi Ishida, and Shinichiro Sawa Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. Science Advances. 2023 https://www.science.org/doi/full/10.1126/sciadv.adf4803 |
BP-20612 | Azido-PEG6-acid | Liaw K, Sharma R, et al Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. Journal of Controlled Release. 2021. 329. pp. 434-444 https://www.sciencedirect.com/science/article/abs/pii/S0168365920307264 |
BP-20612 | Azido-PEG6-acid | Zhang J, Ning Y, Zhu H, Rotile NJ, Wei H, Diyabalanage H, Hansen EC, Zhou IY, Barrett SC, Sojoodi M, Tanabe KK, Humblet V, Jasanoff A, Caravan P, Bawendi MG. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2220036120. doi: 10.1073/pnas.2220036120. Epub 2023 Apr 24. PMID: 37094132; PMCID: PMC10161015. https://pubmed.ncbi.nlm.nih.gov/37094132/ |
BP-22670 | Propargyl-PEG1-SS-alcohol | Rades N, Achazi K, et al. Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs. Journal of Controlled Release. 2019. 300. pp. 13-21. https://www.sciencedirect.com/science/article/pii/S0168365919300616 |
BP-21697 | Amino-PEG5-acid | Afsahia S, Lernera MB, et al. Novel graphene-based biosensor for early detection of Zika virus infection
. Biosensors and Bioelectronics. 2018. 100. pp. 85-88. https://www.sciencedirect.com/science/article/pii/S0956566317305869 |
BP-23649 | DM4 | Zhang X, Zhang C, et al. Design, synthesis and evaluation of anti-CD38 antibody drug conjugate based on Daratumumab and maytansinoid. Bioorganic & Medicinal Chemistry. 2019. 27(3). pp. 479-482. https://www.sciencedirect.com/science/article/pii/S0968089618316201 |
BP-23649 | DM4 | Verhaar, E. R., Knoflook, A., Pishesha, N., Liu, X., van Keizerswaard, W. J., Wucherpfennig, K. W., & Ploegh, H. L. (2024). MICA-specific nanobodies for diagnosis and immunotherapy of MICA+ tumors. Frontiers in Immunology, 15, 1368586. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1368586/full |
BP-23649 | DM4 | Verhaar, E. R. (2024). Targeting MHC-I related proteins for cancer diagnosis and therap (Doctoral dissertation, Leiden University). https://scholarlypublications.universiteitleiden.nl/handle/1887/3766089 |
BP-23649 | DM4 | Wucherpfennig, K. W., & Ploegh, H. L. (2024). MICA-specific nanobodies for diagnosis and immunotherapy of MICA+ tumors. Cell Death in Cancer Immunology. https://books.google.com/books?hl=en&lr=&id=usc0EQAAQBAJ&oi=fnd&pg=PA51&dq=broadpharm&ots=vs31P2bUPp&sig=VqIK6XawpYpPeQs2QQp6WQhR-cw#v=onepage&q=broadpharm&f=false |
BP-20678 | Propargyl-PEG3-acid | Ali F, Karan C, et al A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biology. 2020. 28. 101377 https://www.sciencedirect.com/science/article/pii/S2213231719308973 |
BP-20561 | DNP-PEG4-acid | Mary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194. https://www.sciencedirect.com/science/article/pii/S2451945618301909 |
BP-20562 | DNP-PEG6-acid | Mary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194. https://www.sciencedirect.com/science/article/pii/S2451945618301909 |
BP-20563 | DNP-PEG2-acid | Mary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194. https://www.sciencedirect.com/science/article/pii/S2451945618301909 |
BP-20919 | Azido-PEG4-Amido-tri-(carboxyethoxymethyl)-methane | Mary Sabulski Feigman, Seonghoon Kim, Sean E. Pidgeon, et al. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chemical Biology. 2018; 25(10): pp. 1185-1194. https://www.sciencedirect.com/science/article/pii/S2451945618301909 |
BP-20692 | Azido-PEG2-amine | Lagneau, Nathan, Pierre Tournier, Boris Halgand, François Loll, Yves Maugars, Jérôme Guicheux, Catherine Le Visage, and Vianney Delplace. Click and bioorthogonal hyaluronic acid hydrogels as an ultra-tunable platform for the investigation of cell-material interactions.. Bioactive Meterials. 2023 https://www.sciencedirect.com/science/article/pii/S2452199X22005102 |
BP-20692 | Azido-PEG2-amine | Tournier, P., Saint?Pé, G., Lagneau, N., Loll, F., Halgand, B., Tessier, A., ... & Delplace, V. (2023). Clickable Dynamic Bioinks Enable Post?Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space. Advanced Science, 10(30), 2300055. https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202300055 |
BP-20692 | Azido-PEG2-amine | Zhang, Z., Zeng, J., Li, W., & Matsusaki, M. (2024). Fabrication of Fully Negatively Charged Layer-by-Layer Nanofilms with pH-Induced Remarkable Swelling–Shrinking Properties. Chemistry of Materials. https://pubs.acs.org/doi/full/10.1021/acs.chemmater.3c02789 |
BP-21607 | Azido-PEG12-NHS ester | Hao, Dake, Jonathan Lin, Ruiwu Liu, Christopher Pivetti, Kaeli Yamashiro, Linda M. Schutzman, Junichiro Sageshima A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioactive Materials. 2023 https://www.sciencedirect.com/science/article/pii/S2452199X23001974 |
BP-21607 | Azido-PEG12-NHS ester | Angell, C. D., Lapurga, G., Sun, S. H., Johnson, C., Savardekar, H., Rampersaud, I. V., ... & Carson III, W. E. (2024). Targeting Myeloid-Derived Suppressor Cells via Dual-Antibody Fluorescent Nanodiamond Conjugate. Nanomaterials, 14(18), 1509. https://doi.org/10.3390/nano14181509 |
BP-20989 | Fmoc-N-amido-PEG4-acid | Anderson, Caleb F., Qiong Wang, David Stern, Elissa K. Leonard, Boran Sun, Kyle J. Fergie, Chang-yong Choi et al. Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention. Matter. 2022 https://www.sciencedirect.com/science/article/pii/S2590238522006580 |
BP-22038 | t-Boc-N-amido-PEG24-acid | Van der Beelen SHE, Agten SM, et al Design and synthesis of a multivalent catch-and-release assay to measure circulating FXIa. Thrombosis Research. 2021. 200. pp. 16-21 https://www.thrombosisresearch.com/article/S0049-3848(21)00010-4/fulltext |
BP-26372 | BP Lipid 114 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-26371 | BP Lipid 113 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-26399 | BP Lipid 142 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-27892 | BP Lipid 226 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-27900 | BP Lipid 223 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-28671 | BP Lipid 227 | Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11. https://doi.org/10.1101/2023.11.09.565872 |
BP-22681 | Tetrazine-PEG5-NHS ester | Dinesen A, Andersen VL, Elkhashab M, Pilati D, Bech P, Fuchs E, Samuelsen TR, Winther A, Cai Y, Märcher A, Wall A, Omer M, Nielsen JS, Chudasama V, Baker JR, Gothelf KV, Wengel J, Kjems J, Howard KA. An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation. Bioconjug Chem. 2024 Jan 17. doi: 10.1021/acs.bioconjchem.3c00491. Epub ahead of print. PMID: 38231391. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00491 |
BP-22681 | Tetrazine-PEG5-NHS ester | Dinesen, A., Andersen, V. L., Elkhashab, M., Pilati, D., Bech, P., Fuchs, E., ... & Howard, K. A. (2024). An Albumin-Holliday Junction Biomolecular Modular Design for Programmable Multifunctionality and Prolonged Circulation. Bioconjugate Chemistry. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.3c00491 |
BP-22681 | Tetrazine-PEG5-NHS ester | Gandhi, S., Shaulli, X., Fock, J., Scheffold, F., & Marie, R. (2024). IgG and IgM differentiation in a particle-based agglutination assay by control over antigen surface density. APL bioengineering, 8(2). https://pubs.aip.org/aip/apb/article/8/2/026124/3298169 |
BP-22681 | Tetrazine-PEG5-NHS ester | Nagao, K., Vargas Paniagua, E., Lei, K., Beckham, J. L., Worthington, P., Manthey, M., ... & Anikeeva, P. (2025). Adeno-associated viruses escort nanomaterials to specific cells and tissues. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.04.647267 |
BP-25503 | NHS ester-PEG4-Val-Cit-PAB-MMAE | Huang, C. H., Chang, E., Zheng, L., Raj, J. G. J., Wu, W., Pisani, L. J., & Daldrup-Link, H. E. (2023). Tumor protease-activated theranostic nanoparticles for MRI-guided glioblastoma therapy. Theranostics, 13(6), 1745–1758. https://doi.org/10.7150/thno.79342 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091873/ |
BP-26971 | PLA(5k)-PEG(1k)-MAL | Huang, K., Pitman, M., Oladosu, O., Echesabal-Chen, J., Vojtech, L., Esobi, I., ... & Stamatikos, A. (2023). The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells. Diseases, 11(3), 88. https://www.mdpi.com/2079-9721/11/3/88 |
BP-26971 | PLA(5k)-PEG(1k)-MAL | Trumbull, K., Fetten, S., Montgomery, D., Marahrens, V., Myers, O., Arnold, N., ... & Larsen, J. (2024). Targeted Polymersomes Enable Enhanced Delivery to Peripheral Nerves Post-Injury. bioRxiv, 2024-09. https://doi.org/10.1101/2024.09.05.611478 |
BP-40498 | Pomalidomide-PEG4-azide | Vartak, R., Deore, B., Sanhueza, C. A., & Patel, K. (2023). Cetuximab-based PROteolysis targeting chimera for effectual downregulation of NSCLC with varied EGFR mutations. International Journal of Biological Macromolecules, 252, 126413. https://www.sciencedirect.com/science/article/abs/pii/S0141813023033093 |
BP-21620 | Biotin-PEG12-acid | Callahan, A. (2023). Automated Flow Synthesis of Biomacromolecules (Doctoral dissertation, Massachusetts Institute of Technology). https://dspace.mit.edu/handle/1721.1/152125 |
BP-21620 | Biotin-PEG12-acid | Callahan, A. J., Gandhesiri, S., Travaline, T. L., Reja, R. M., Lozano Salazar, L., Hanna, S., ... & Pentelute, B. L. (2024). Mirror-image ligand discovery enabled by single-shot fast-flow synthesis of D-proteins. Nature Communications, 15(1), 1813. https://www.nature.com/articles/s41467-024-45634-z |
BP-22275 | Cy5-NHS ester | Zhang, D. (2023). Development of zein-based bionanoparticles for highly efficient targeted glioblastoma therapy and investigation of conformational dynamics of SARS-CoV-2 variants RBDs and their interactions with ACE2 by mass spectrometry. https://theses.lib.polyu.edu.hk/handle/200/12561 |
BP-22275 | Cy5-NHS ester | Cardle, I. I., Scherer, D. R., Jensen, M. C., Pun, S. H., & Sellers, D. L. (2025). In Situ Bioconjugation of Synthetic Peptides onto Universal Chimeric Antigen Receptor T Cells for Targeted Cancer Immunotherapies. ACS nano. https://pubs.acs.org/doi/full/10.1021/acsnano.4c16824 |
BP-22275 | Cy5-NHS ester | Ren, L., Nguyen, N. T. V., Yao, T., Nguyen, K. T., & Yuan, B. (2025). Experimental studies on squeezing interstitial fluid via transfer of ultrasound momentum (SIF-TUM) in ex vivo chicken and porcine tissues. Journal of Applied Physics, 137(13). https://pubs.aip.org/aip/jap/article/137/13/135103/3340188 |
BP-21948 | Bis-PEG25-NHS ester | Duan, H., Abram, T. G., Cruz, A. R., Rooijakkers, S. H., & Geisbrecht, B. V. (2023). New Insights into the Complement Receptor of the Ig Superfamily Obtained from Structural and Functional Studies on Two Mutants. ImmunoHorizons, 7(11), 806-818. https://journals.aai.org/immunohorizons/article/7/11/806/266490 |
BP-21639 | t-Boc-N-amido-PEG12-acid | Roth, J. G., Huang, M. S., Navarro, R. S., Akram, J. T., LeSavage, B. L., & Heilshorn, S. C. (2023). Tunable hydrogel viscoelasticity modulates human neural maturation. Science Advances, 9(42), eadh8313. https://www.science.org/doi/full/10.1126/sciadv.adh8313 |
BP-22037 | Fmoc-N-amido-PEG36-acid | Tong, Y., Gu, M., Luo, X., Qi, H., Jiang, W., Deng, Y., ... & Hu, Y. (2023). An engineered nanoplatform cascade to relieve extracellular acidity and enhance resistance-free chemotherapy. Journal of Controlled Release, 363, 562-573. https://www.sciencedirect.com/science/article/abs/pii/S0168365923006557 |
BP-23885 | BDP FL-PEG4-amine TFA salt | Mascuch, S. J., Khatri Chhetri, B., Mojib, N., & Kubanek, J. (2023). Visualization of the chemical defense molecule formoside binding to sensory structures in a model fish predator. Journal of Experimental Biology, 226(24). https://journals.biologists.com/jeb/article/226/24/jeb246246/339090 |
BP-21626 | Biotin-PEG11-azide | Mascuch, S. J., Khatri Chhetri, B., Mojib, N., & Kubanek, J. (2023). Visualization of the chemical defense molecule formoside binding to sensory structures in a model fish predator. Journal of Experimental Biology, 226(24). https://journals.biologists.com/jeb/article/226/24/jeb246246/339090 |
BP-22231 | DBCO-NHS | Bertucci, A., Capelli, L., Pedrini, F., Di Pede, A. C., Bagheri, N., Fortunati, S., ... & Porchetta, A. (2023). Synthetic Protein-to-DNA Input Exchange for Protease Activity Detection Using CRISPR-Cas12a. https://chemrxiv.org/engage/chemrxiv/article-details/6565bf5acf8b3c3cd74f4ffb |
BP-22231 | DBCO-NHS | Hu, H., & Zhang, C. (2025). Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. Journal of Biomedical Materials Research Part A, 113(1), e37807. https://doi.org/10.1002/jbm.a.37807 |
BP-23990 | DM1-PEG4-BCN | Yang, Q., Chen, H., Ou, C., Zheng, Z., Zhang, X., Liu, Y., ... & Wang, L. X. (2023). Evaluation of Two Chemoenzymatic Glycan Remodeling Approaches to Generate Site-Specific Antibody–Drug Conjugates. Antibodies, 12(4), 71. https://www.mdpi.com/2073-4468/12/4/71 |
BP-22429 | Methyltetrazine-NHS ester | Alshehri, S., Rawat, P., Basiri, A., Zhang, W., Fan, W., Rikhtechi, P., & Garrison, J. C. (2023). Exploration of a Pretargeted Theranostic Copolymer Employing Inverse Electron-Demand Diels–Alder Conjugation in Ovarian Cancer. ACS Applied Polymer Materials, 6(1), 218-231. https://pubs.acs.org/doi/abs/10.1021/acsapm.3c01849 |
BP-22429 | Methyltetrazine-NHS ester | Hu, H., & Zhang, C. (2025). Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. Journal of Biomedical Materials Research Part A, 113(1), e37807. https://doi.org/10.1002/jbm.a.37807 |
BP-23852 | t-Boc-Aminooxy-PEG1-amine | Wang, X., Chang, W., Khosraviani, M., Phung, W., Peng, L., Cohen, S., ... & Song, A. (2023). Application of N-Terminal Site-Specific Biotin and Digoxigenin Conjugates to Clinical Anti-drug Antibody Assay Development. Bioconjugate Chemistry. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.3c00421 |
BP-21097 | Bromoacetamido-PEG5-azide | Awuah, D., Li, L., Williams, L., Urak, R., Kujawski, M., Forman, S. J., ... & Wang, X. (2023). Ex-vivo CS1-OKT3 dual specific bivalent antibody-armed effector T cells mediate cellular immunity against multiple myeloma. Scientific Reports, 13(1), 20853. https://www.nature.com/articles/s41598-023-47115-7 |
BP-23943 | Sulfo-Cy5.5 carboxylic acid | Burden, D. L., Meyer, J. J., Michael, R. D., Anderson, S. C., Burden, H. M., Peña, S. M., ... & Keranen-Burden, L. M. (2023). Confirming Silent Translocation through Nanopores with Simultaneous Single-Molecule Fluorescence and Single-Channel Electrical Recordings. Analytical Chemistry, 95(49), 18020-18028. https://pubs.acs.org/doi/full/10.1021/acs.analchem.3c02329 |
BP-22483 | Sulfo-Cy5 Azide | Krishnan, M. A., Alimi, O. A., Pan, T., Kuss, M., Korade, Z., Hu, G., ... & Duan, B. (2024). Engineering Neurotoxin-Functionalized Exosomes for Targeted Delivery to the Peripheral Nervous System. Pharmaceutics, 16(1), 102. https://www.mdpi.com/1999-4923/16/1/102 |
BP-25496 | DMG-PEG 2000 | Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888. https://www.mdpi.com/1422-0067/25/2/888 |
BP-25496 | DMG-PEG 2000 | Schober, G. B., Story, S., & Arya, D. P. (2024). A careful look at lipid nanoparticle characterization: analysis of benchmark formulations for encapsulation of RNA cargo size gradient. Scientific Reports, 14(1), 2403. https://www.nature.com/articles/s41598-024-52685-1 |
BP-25496 | DMG-PEG 2000 | Grigoriev, V., Korzun, T., Moses, A. S., Jozic, A., Zhu, X., Kim, J., ... & Taratula, O. (2024). Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS nano, 18(49), 33330-33347. https://pubs.acs.org/doi/full/10.1021/acsnano.4c06930 |
BP-25496 | DMG-PEG 2000 | Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24. https://www.nature.com/articles/s41541-025-01079-z |
BP-21628 | Fmoc-N-amido-PEG3-acid | Bataille Backer, P., Adekiya, T. A., Kim, Y., Reid, T. E. R., Thomas, M., & Adesina, S. K. (2024). Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS Omega. https://pubs.acs.org/doi/full/10.1021/acsomega.3c07486 |
BP-22584 | m-PEG13-NHS ester | Moon, J. D., Webber, T. R., Brown, D. R., Richardson, P. M., Casey, T. M., Segalman, R. A., ... & Han, S. (2024). Nanoscale water–polymer interactions tune macroscopic diffusivity of water in aqueous poly (ethylene oxide) solutions. Chemical Science. https://pubs.rsc.org/en/content/articlehtml/2024/sc/d3sc05377f |
BP-20419 | Amino-PEG4-t-butyl ester | Elter, J. K., Lis?c?a?kova?, V., Moravec, O., Vragovic?, M., Filipova?, M., S?te?pa?nek, P., ... & Hruby?, M. (2024). Solid-Phase Synthesis as a Tool to Create Exactly Defined, Branched Polymer Vectors for Cell Membrane Targeting. Macromolecules. https://pubs.acs.org/doi/full/10.1021/acs.macromol.3c02600 |
BP-20419 | Amino-PEG4-t-butyl ester | Murata, H., Kapil, K., Kaupbayeva, B., Russell, A. J., Dordick, J. S., & Matyjaszewski, K. (2024). Artificial Zymogen Based on Protein–Polymer Hybrids. Biomacromolecules, 25(11), 7433-7445. https://pubs.acs.org/doi/full/10.1021/acs.biomac.4c01079 |
BP-25506 | BP Fluor 488 Maleimide | Loll, P. J., Grasty, K. C., Shultis, D. D., Guzman, N. J., & Wiener, M. C. (2024). Discovery and structural characterization of the D-box, a conserved TonB motif that couples an inner-membrane motor to outer-membrane transport. Journal of Biological Chemistry, 105723. https://www.sciencedirect.com/science/article/pii/S0021925824000991 |
BP-22446 | Methyltetrazine-PEG4-azide | Kellner, A. V., Hunter, R., Do, P., Eggert, J., Jaffe, M., Geitgey, D. K., ... & Salaita, K. (2024). The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. bioRxiv, 2024-01. https://scholar.googleusercontent.com/scholar?q=cache:_MzjtxrMe88J:scholar.google.com/&hl=en&as_sdt=0,36 |
BP-26155 | DSPE-N3 | Toro-González, M., Akingbesote, N., Bible, A., Sanders, B., Ivanov, A. S., Jansone-Popova, S., ... & Davern, S. (2024). Development of 225 Ac-doped Biocompatible Nanoparticles for Targeted Alpha Therapy. https://doi.org/10.21203/rs.3.rs-3921227/v1 |
BP-22552 | Cy5 maleimide | Fischer, J. M., Stewart, M., Dai, M., Drennan, S., Holland, S., Quentel, A., ... & Yildirim, A. (2024). Peptide Amphiphiles Hitchhike on Endogenous Biomolecules for Enhanced Cancer Imaging and Therapy. bioRxiv, 2024-02. https://www.biorxiv.org/content/10.1101/2024.02.21.580762v1.abstract |
BP-21956 | Azido-PEG23 amine | Si, G., Hapuarachchige, S., Lesniak, W., & Artemov, D. (2024). PET-MR Guided, Pre-targeted delivery to HER2 (+) Breast Cancer Model. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925432/ |
BP-23648 | DM1 | Verhaar, E. R., Knoflook, A., Pishesha, N., Liu, X., van Keizerswaard, W. J., Wucherpfennig, K. W., & Ploegh, H. L. (2024). MICA-specific nanobodies for diagnosis and immunotherapy of MICA+ tumors. Frontiers in Immunology, 15, 1368586. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1368586/full |
BP-23648 | DM1 | Verhaar, E. R. (2024). Targeting MHC-I related proteins for cancer diagnosis and therap (Doctoral dissertation, Leiden University). https://scholarlypublications.universiteitleiden.nl/handle/1887/3766089 |
BP-23913 | TAMRA azide, 5-isomer | Suazo, K. F., Mishra, V., Maity, S., Auger, S. A., Justyna, K., Petre, A. M., ... & Distefano, M. D. (2024). Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. Bioorganic Chemistry, 147, 107365. https://www.sciencedirect.com/science/article/abs/pii/S0045206824002700 |
BP-24297 | Biotin-Azide | Suazo, K. F., Mishra, V., Maity, S., Auger, S. A., Justyna, K., Petre, A. M., ... & Distefano, M. D. (2024). Improved synthesis and application of an alkyne-functionalized isoprenoid analogue to study the prenylomes of motor neurons, astrocytes and their stem cell progenitors. Bioorganic Chemistry, 147, 107365. https://www.sciencedirect.com/science/article/abs/pii/S0045206824002700 |
BP-23691 | Amine-PEG-Valeric Acid, MW 5,000 | Jia, T., Saikam, V., Luo, Y., Sheng, X., Fang, J., Kumar, M., & Iyer, S. S. (2024). Combining Bioorthogonal Chemistry with Fluorescent Silica Nanoparticles for the Ultrasensitive Detection of the HIV-1 p24 Antigen. ACS omega, 9(12), 14604-14612. https://doi.org/10.1021/acsomega.3c06136 |
BP-23966 | PEG-bis-CH2CO2H, MW 5,000 | Jia, T., Saikam, V., Luo, Y., Sheng, X., Fang, J., Kumar, M., & Iyer, S. S. (2024). Combining Bioorthogonal Chemistry with Fluorescent Silica Nanoparticles for the Ultrasensitive Detection of the HIV-1 p24 Antigen. ACS omega, 9(12), 14604-14612. https://doi.org/10.1021/acsomega.3c06136 |
BP-24159 | TCO-PEG6-amine | Jia, T., Saikam, V., Luo, Y., Sheng, X., Fang, J., Kumar, M., & Iyer, S. S. (2024). Combining Bioorthogonal Chemistry with Fluorescent Silica Nanoparticles for the Ultrasensitive Detection of the HIV-1 p24 Antigen. ACS omega, 9(12), 14604-14612. https://doi.org/10.1021/acsomega.3c06136 |
BP-22296 | DBCO-Sulfo-Link-biotin | Lu, W., Terasaka, N., Sakaguchi, Y., Suzuki, T., Suzuki, T., & Suga, H. (2024). An anticodon-sensing T-boxzyme generates the elongator nonproteinogenic aminoacyl-tRNA in situ of a custom-made translation system for incorporation. Nucleic Acids Research, 52(7), 3938-3949. https://academic.oup.com/nar/article/52/7/3938/7627879 |
BP-20559 | Azido-PEG4-alcohol | Sharma, A., Sah, N., Sharma, R., Vyas, P., Liyanage, W., Kannan, S., & Kannan, R. M. (2024). Development of a novel glucose?dendrimer based therapeutic targeting hyperexcitable neurons in neurological disorders. Bioengineering & Translational Medicine, e10655. https://doi.org/10.1002/btm2.10655 |
BP-23592 | Bis-aminooxy-PEG2 | Lui, I. (2024). Engineering protein tools to understand changes in cell surface proteolysis and viral protein-protein interactions (Doctoral dissertation, UCSF). https://escholarship.org/uc/item/8cg7x91v |
BP-23591 | Bis-aminooxy-PEG7 | Lui, I. (2024). Engineering protein tools to understand changes in cell surface proteolysis and viral protein-protein interactions (Doctoral dissertation, UCSF). https://escholarship.org/uc/item/8cg7x91v |
BP-23317 | Sulfo DBCO-Maleimide | Zhang, C., Zhou, C., Magassa, A., Fang, D., & Zhang, X. (2024). A platform for mapping reactive cysteines within the immunopeptidome. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.02.587775 |
BP-22293 | DBCO-Maleimide | Zhang, C., Zhou, C., Magassa, A., Fang, D., & Zhang, X. (2024). A platform for mapping reactive cysteines within the immunopeptidome. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.02.587775 |
BP-23318 | Sulfo DBCO-PEG4-Maleimide | Zhang, C., Zhou, C., Magassa, A., Fang, D., & Zhang, X. (2024). A platform for mapping reactive cysteines within the immunopeptidome. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.02.587775 |
BP-25512 | Sulfo-NHS-Biotin | Zhang, C., Zhou, C., Magassa, A., Fang, D., & Zhang, X. (2024). A platform for mapping reactive cysteines within the immunopeptidome. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.02.587775 |
BP-27974 | 3-(5-Amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione | Carter, T. R., Milosevich, N., Dada, L., Shaum, J. B., Sharpless, K. B., Kitamura, S., & Erb, M. A. (2024). SuFEx-based chemical diversification for the systematic discovery of CRBN molecular glues. Bioorganic & Medicinal Chemistry, 104, 117699. https://www.sciencedirect.com/science/article/pii/S0968089624001135 |
BP-25497 | D-Lin-MC3-DMA | Chiesa, E., Caimi, A., Bellotti, M., Giglio, A., Conti, B., Dorati, R., ... & Genta, I. (2024). Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids. Pharmaceutics, 16(4), 507. https://www.mdpi.com/1999-4923/16/4/507 |
BP-25497 | D-Lin-MC3-DMA | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-25497 | D-Lin-MC3-DMA | Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763. https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433 |
BP-25497 | D-Lin-MC3-DMA | Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV. https://lib.ugent.be/catalog/rug01:003212736 |
BP-25497 | D-Lin-MC3-DMA | Giménez-Warren, J., Peña, Á., Heredero, J., Mata, E., Blandín, B., de Miguel, D., ... & Martínez-Oliván, J. (2024). STAAR Lipids: A Novel Ionizable Lipid Synthetic Platform for Efficient mRNA Delivery In Vivo with Tunable Lung Targeting. https://doi.org/10.21203/rs.3.rs-5124244/v1 |
BP-25497 | D-Lin-MC3-DMA | Han, X., Petrova, V., Song, Y., Cheng, Y. T., Jiang, X., Zhou, H., ... & Shi, J. (2025). Lipid nanoparticle delivery of siRNA to dorsal root ganglion neurons to treat pain. bioRxiv, 2025-01. https://www.biorxiv.org/content/10.1101/2025.01.23.633455v1.full |
BP-25497 | D-Lin-MC3-DMA | Panja, S., Zaman, L. A., Zhang, C., Patel, M., Gorantla, S., Dash, P. K., & Gendelman, H. E. Lymphoid and CXCR4 Cell Targeted Lipid Nanoparticles Facilitate HIV-1 Proviral DNA Excision. Available at SSRN 5136145. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5136145 |
BP-25497 | D-Lin-MC3-DMA | Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367. https://doi.org/10.1016/j.ijpharm.2025.125367 |
BP-25497 | D-Lin-MC3-DMA | Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339. https://www.mdpi.com/2076-393X/13/4/339 |
BP-25497 | D-Lin-MC3-DMA | Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566. https://www.mdpi.com/1999-4923/17/5/566 |
BP-25497 | D-Lin-MC3-DMA | Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726. https://doi.org/10.1016/j.ejpb.2025.114726 |
BP-23715 | DSPE-PEG4-DBCO | Homma, K., Miura, Y., Kobayashi, M., Chintrakulchai, W., Toyoda, M., Ogi, K., ... & Nishiyama, N. (2024). Fine tuning of the net charge alternation of polyzwitterion surfaced lipid nanoparticles to enhance cellular uptake and membrane fusion potential. Science and Technology of Advanced Materials, 25(1), 2338785. https://doi.org/10.1080/14686996.2024.2338785 |
BP-40207 | DSPE-PEG-DBCO, MW 2,000 | Al-janabi, H., Moyes, K., Allen, R. J., Fisher, M., Crespo, M., Gurel, B., ... & Lewis, C. E. (2024). Targeting of a STING Agonist to Perivascular Macrophages in Prostate Tumors Delays Resistance to Androgen Deprivation Therapy. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.11.589003 |
BP-40207 | DSPE-PEG-DBCO, MW 2,000 | Mourik, C. M. (2024). VHH-Mediated targeting of osteoarthritic Synovium by synthesizing functional lipid nanoparticles using post-insertion (Bachelor's thesis, University of Twente). https://essay.utwente.nl/102560/ |
BP-29548 | 93-O17S | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-29589 | Lipid C24 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-41420 | 1O14 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-26127 | Lipid 5 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-41393 | Lipid AX4 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-28065 | 306Oi10 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-28065 | 306Oi10 | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-40710 | Lipid A6 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-29067 | BAMEA-O16B | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-29066 | 98N12-5 | Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04. https://doi.org/10.1101/2024.04.16.589801 |
BP-20671 | Biotin-PEG2-amine | Fergie, K. J., Wilson, D. R., Kracíková, L., Androvi?, L., Yamagata, H., Wang, E. B., ... & Laga, R. (2024). Structural optimization of diblock polymers that undergo thermo-responsive nanoparticle self-assembly for intravitreal drug delivery. European Polymer Journal, 212, 113054. https://www.sciencedirect.com/science/article/pii/S001430572400315X |
BP-22634 | Sulfo-NHS-SS-biotin | Hamm, P., Meinel, L., Beckmann, D., Worschech, R., Braun, A., Gutmann, M., ... & Pap, T. Transglutaminase-Catalyzed Covalent Anti-Myostatin Peptide Depots. Available at SSRN 4801105. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4801105 |
BP-20509 | 3-Maleimido-propionic NHS ester | Han, Z., Hayes, O. G., Partridge, B. E., Huang, C., & Mirkin, C. A. (2024). Reversible strain-promoted DNA polymerization. Science Advances, 10(17), eado8020. https://www.science.org/doi/full/10.1126/sciadv.ado8020 |
BP-20509 | 3-Maleimido-propionic NHS ester | Kumar Podder, A., Mohamed, M. A., Seidman, R. A., Tseropoulos, G., Polanco, J. J., Lei, P., ... & Andreadis, S. T. (2024). Injectable shear-thinning hydrogels promote oligodendrocyte progenitor cell survival and remyelination in the central nervous system. Science Advances, 10(28), eadk9918. https://www.science.org/doi/full/10.1126/sciadv.adk9918 |
BP-25163 | 4arm-PEG-ACRL, MW 10,000 | Baars, I. (2024). DNA tools for imaging and manipulation of biological samples. Inst för medicinsk biokemi och biofysik/Dept of Medical Biochemistry and Biophysics. https://openarchive.ki.se/xmlui/handle/10616/49085 |
BP-22939 | Biotin-PEG3-methyltetrazine | Auger, S. A., Venkatachalapathy, S., Suazo, K. F. G., Wang, Y., Sarkis, A. W., Bernhagen, K., ... & Distefano, M. D. Supporting Information Broadening the utility of farnesyltransferase-catalyzed protein labeling using norbornene-tetrazine click chemistry. https://plueckthun.bioc.uzh.ch/wp-content/uploads/Publications/Supp0533.pdf |
BP-22940 | TAMRA-PEG4-Tetrazine | Auger, S. A., Venkatachalapathy, S., Suazo, K. F. G., Wang, Y., Sarkis, A. W., Bernhagen, K., ... & Distefano, M. D. Supporting Information Broadening the utility of farnesyltransferase-catalyzed protein labeling using norbornene-tetrazine click chemistry. https://plueckthun.bioc.uzh.ch/wp-content/uploads/Publications/Supp0533.pdf |
BP-22940 | TAMRA-PEG4-Tetrazine | Zaleski, M. H., Chase, L. S., Hood, E. D., Wang, Z., Nong, J., Espy, C. L., ... & Brenner, J. S. (2025). Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. Advanced Materials, 37(5), 2409945. https://doi.org/10.1002/adma.202409945 |
BP-22280 | Azido-PEG2-CH2CO2H | Moore, W. M., Brea, R. J., Knittel, C., Wrightsman, E., Hui, B., Loui, J., ... & Budin, I. (2024). Subcellular imaging of lipids and sugars using genetically encoded proximity sensors. bioRxiv, 2024-05. https://doi.org/10.1101/2024.05.01.592120 |
BP-24290 | DBCO-PEG2-acid | Moore, W. M., Brea, R. J., Knittel, C., Wrightsman, E., Hui, B., Loui, J., ... & Budin, I. (2024). Subcellular imaging of lipids and sugars using genetically encoded proximity sensors. bioRxiv, 2024-05. https://doi.org/10.1101/2024.05.01.592120 |
BP-22436 | Methyltetrazine-PEG3-maleimide | Gao, H., Zhang, T., Langenstein, M., Xie, W., Udan, S., Zhang, Z., ... & Jia, X. (2024). Bioorthogonal Polymerization of Coiled-Coil Peptides. https://chemrxiv.org/engage/chemrxiv/article-details/6632941791aefa6ce1e6f2f8 |
BP-22722 | DSPE-PEG-Amine, MW 2,000 | Gaikwad, P., Rahman, N., Parikh, R., Crespo, J., Cohen, Z., & Williams, R. M. (2024). Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine Interleukin-6. ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/full/10.1021/acsami.4c02711 |
BP-20701 | Biotin-PEG3-azide | Martinez, B., Henry, C. S., Reynolds, M., Snow, C., & Tobet, S. (2024). THERMOPLASTIC ELECTRODE SURFACE MODIFICATIONS FOR USE AS LABEL-FREE ELECTROCHEMICAL IMMUNOSENSORS. https://mountainscholar.org/items/18a675a6-6aee-4aae-926e-278e3e253d43 |
BP-26188 | DSPE-PEG-Azide, MW 2,000 | Kocabiyik, O., Amlashi, P., Vo, A. L., Suh, H., Rodriguez-Aponte, S. A., Dalvie, N. C., ... & Irvine, D. J. (2024). Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. Science Advances, 10(22), eadn7786. https://www.science.org/doi/full/10.1126/sciadv.adn7786 |
BP-25769 | Cholesterol-PEG-Azide, MW 2,000 | Kocabiyik, O., Amlashi, P., Vo, A. L., Suh, H., Rodriguez-Aponte, S. A., Dalvie, N. C., ... & Irvine, D. J. (2024). Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. Science Advances, 10(22), eadn7786. https://www.science.org/doi/full/10.1126/sciadv.adn7786 |
BP-24123 | TCO-PEG12-NHS ester | Gandhi, S., Shaulli, X., Fock, J., Scheffold, F., & Marie, R. (2024). IgG and IgM differentiation in a particle-based agglutination assay by control over antigen surface density. APL bioengineering, 8(2). https://pubs.aip.org/aip/apb/article/8/2/026124/3298169 |
BP-25536 | BP Fluor 405 Acid | Mokhonova, E. I., Malik, R., Mamsa, H., Walker, J., Gibbs, E. M., & Crosbie, R. H. (2024). The Development of Robust Antibodies to Sarcospan, a Dystrophin-and Integrin-Associated Protein, for Basic and Translational Research. International Journal of Molecular Sciences, 25(11), 6121. https://www.mdpi.com/1422-0067/25/11/6121 |
BP-22532 | diSulfo-Cy5 alkyne | Very, N., Boulet, C., Gheeraert, C., Berthier, A., Johanns, M., Bou Saleh, M., ... & Eeckhoute, J. (2024). O-GlcNAcylation controls pro-fibrotic transcriptional regulatory signaling in myofibroblasts. Cell Death & Disease, 15(6), 391. https://www.nature.com/articles/s41419-024-06773-9 |
BP-22220 | Acid-PEG5-NHS ester | Portas, P. V. (2024). Towards radiolabeled tracers for the Cs-rich microparticles released from the FDNPP. Imaging, 21(12), 4309. https://helda.helsinki.fi/server/api/core/bitstreams/8cc95824-ff43-4d98-9b6c-10ca0b5c168a/content |
BP-21913 | m-PEG24-azide | Liu, Q., Ntim, T., Wu, Z., Houson, H. A., Lapi, S. E., & Lindsey, J. S. (2024). Molecular design for sub-micromolar enzyme-instructed self-assembly (EISA). New Journal of Chemistry. https://pubs.rsc.org/en/content/articlehtml/2024/nj/d4nj01798f |
BP-29777 | DBCO-PEG-NHS ester, MW 5,000 | Kang, N. W., Seo, Y. A., Jackson, K. J., Jang, K., Song, E., Han, U., ... & Myung, D. (2024). Photoactivated growth factor release from bio-orthogonally crosslinked hydrogels for the regeneration of corneal defects. Bioactive Materials, 40, 417-429. https://www.sciencedirect.com/science/article/pii/S2452199X24002111 |
BP-22951 | PC Azido-PEG3-NHS carbonate ester | Kang, N. W., Seo, Y. A., Jackson, K. J., Jang, K., Song, E., Han, U., ... & Myung, D. (2024). Photoactivated growth factor release from bio-orthogonally crosslinked hydrogels for the regeneration of corneal defects. Bioactive Materials, 40, 417-429. https://www.sciencedirect.com/science/article/pii/S2452199X24002111 |
BP-25584 | BP Fluor 647 DBCO | Beyer, J., Serebrenik, Y., Toy, K., Najar, M. A., Raniszewski, N., Shalem, O., & Burslem, G. (2024). Intracellular Protein Editing to Enable Incorporation of Non-Canonical Residues into Endogenous Proteins. bioRxiv, 2024-07. https://doi.org/10.1101/2024.07.08.602493 |
BP-25584 | BP Fluor 647 DBCO | Bernstein, Z. J., Gierke, T. R., Dammen-Brower, K., Tzeng, S. Y., Zhu, S., Chen, S. S., ... & Spangler, J. B. (2024). Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. Journal of Biological Chemistry, 300(12). https://www.jbc.org/article/S0021-9258(24)02507-9/fulltext |
BP-24307 | BP Fluor 488 NHS ester | Edelmaier, C. J., Klawa, S. J., Mofidi, S. M., Wang, Q., Bhonge, S., Vogt, E. J., ... & Nazockdast, E. (2024). Charge distribution and helical content tune the binding of septin [&prime] s amphipathic helix domain to lipid membranes. bioRxiv, 2024-07. https://doi.org/10.1101/2024.07.05.602292 |
BP-21615 | Azido-PEG4-amine | Tu, J., Toh, Y., Aldana, A. M., Wen, J. J., Wu, L., Jacob, J., ... & Liu, Q. J. (2024). Antitumor Activity of a Pyrrolobenzodiazepine Antibody–Drug Conjugate Targeting LGR5 in Preclinical Models of Neuroblastoma. Pharmaceutics, 16(7), 943. https://doi.org/10.3390/pharmaceutics16070943 |
BP-27945 | 3-azido-7-Hydroxycoumarin | Pilkington, C. P., Gispert, I., Chui, S. Y., Seddon, J. M., & Elani, Y. (2024). Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release. Nature Chemistry, 1-9. https://www.nature.com/articles/s41557-024-01584-z |
BP-24099 | TCO-PEG3-amine | Bork, I., Dombrowsky, C. S., Bitsch, S., Happel, D., Geyer, F. K., Avrutina, O., & Kolmar, H. (2024). Tailor-Made Bioactive Papers by Site-Specific and Orthogonal Covalent Immobilization of Proteins. Biomacromolecules, 25(8), 5300-5309. https://doi.org/10.1021/acs.biomac.4c00724 |
BP-40209 | DSPE-PEG-DBCO, MW 5,000 | Mourik, C. M. (2024). VHH-Mediated targeting of osteoarthritic Synovium by synthesizing functional lipid nanoparticles using post-insertion (Bachelor's thesis, University of Twente). https://essay.utwente.nl/102560/ |
BP-27843 | MC-Val-Cit-PAB-MMAF | Pistono, P. E., Xu, J., Huang, P., Fetzer, J. L., & Francis, M. B. (2024). Exploring the Effects of Intersubunit Interface Mutations on Virus-Like Particle Structure and Stability. Biochemistry, 63(15), 1913-1924. https://doi.org/10.1021/acs.biochem.4c00225 |
BP-26235 | DSPE-PEG-SH, MW 1,000 | Su, F., Ye, W., Shen, Y., Xie, Y., Zhang, C., Zhang, Q., ... & He, B. (2024). Immuno?Nanocomplexes Target Heterogenous Network of Inflammation and Immunity in Myocardial Infarction. Advanced Science, 2402267. https://doi.org/10.1002/advs.202402267 |
BP-22380 | Ald-Ph-PEG3-azide | Chang, T. L., Borelli, A. N., Cutler, A. A., Olwin, B. B., & Anseth, K. S. Myofibers Cultured in Viscoelastic Hydrogels Reveal the Effects of Integrin-Binding and Mechanosensing on Muscle Satellite Cells. Available at SSRN 4905728. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4905728 |
BP-22380 | Ald-Ph-PEG3-azide | Borelli, A. N., Schultze, C. L., Young, M. W., Kirkpatrick, B. E., & Anseth, K. S. (2025). Ligand presentation controls collective MSC response to matrix stress relaxation in hybrid PEG-HA hydrogels. Bioactive Materials, 44, 152-163. https://doi.org/10.1016/j.bioactmat.2024.10.007 |
BP-22247 | m-PEG24-NHS ester | Nagao, K., Lei, K., Worthington, P., Kent, N., Onoda, M., Malkin, E., ... & Anikeeva, P. (2024). A Versatile Silica Functionalization Strategy for Nanomaterials. https://chemrxiv.org/engage/chemrxiv/article-details/66a579f35101a2ffa849b1f2 |
BP-22609 | Biotin-PEG6-alcohol | Meng, X., Petrou, L., Kenaan, A., Khan, D., O'Hare, D., & Ladame, S. (2024). Pitfalls and challenges of peptide nucleic acid immobilisation on carbon surfaces for sequence-specific capturing of nucleic acid biomarkers. Biosensors and Bioelectronics, 264, 116634. https://www.sciencedirect.com/science/article/pii/S0956566324006407 |
BP-22544 | FAM azide, 5-isomer | Ahrens, H., Barber, D. M., Bojack, G., Bollenbach?Wahl, B., Churchman, L., Getachew, R., ... & Frackenpohl, J. (2024). Synthesis and biological profile of substituted hexahydrofuro [3, 4?b] furans, a novel class of bicyclic acyl?acyl carrier protein (ACP) thioesterase inhibitors. Pest Management Science. https://scijournals.onlinelibrary.wiley.com/doi/full/10.1002/ps.8357 |
BP-22544 | FAM azide, 5-isomer | Fahrenhorst?Jones, T., Lee, S., Bollenbach?Wahl, B., Bojack, G., Braun, R., Frackenpohl, J., ... & Barber, D. M. (2024). Scaffold hopping approaches for the exploration of herbicidally active compounds inhibiting Acyl?ACP Thioesterase. Pest Management Science. https://doi.org/10.1002/ps.8370 |
BP-20553 | Mal-PEG6-NHS ester | Kim, S., Okafor, K. K., Tabuchi, R., Briones, C., & Lee, I. H. (2024). Phase Separation Clustering of Poly Ubiquitin Cargos on the Ternary Mixture Lipid Membranes by Synthetically Cross-Linked Ubiquitin Binder Peptides. bioRxiv, 2024-08. https://doi.org/10.1101/2024.08.17.608403 |
BP-25345 | Thiol-PEG-CH2CO2H, MW 1,000 | Karo?, S., Porycka, K., Lapitan Jr, L. D., Drozd, M., Pietrzak, M., & Malinowska, E. (2024). A versatile approach to quality control of protein-based receptor layers by reversible, nonspecific staining for multiplex SPRi immunosensing. Sensors and Actuators B: Chemical, 421, 136512. https://www.sciencedirect.com/science/article/pii/S0925400524012425 |
BP-23292 | MC-Val-Cit-PAB-PNP | Cochran, M., Arias, D., Burke, R., Chu, D., Erdogan, G., Hood, M., ... & Doppalapudi, V. R. (2024). Structure–Activity Relationship of Antibody–Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody–siRNA Conjugates for Drug Development. Journal of medicinal chemistry. https://doi.org/10.1021/acs.jmedchem.4c00802 |
BP-21857 | Azido-PEG1-NHS ester | Cochran, M., Arias, D., Burke, R., Chu, D., Erdogan, G., Hood, M., ... & Doppalapudi, V. R. (2024). Structure–Activity Relationship of Antibody–Oligonucleotide Conjugates: Evaluating Bioconjugation Strategies for Antibody–siRNA Conjugates for Drug Development. Journal of medicinal chemistry. https://doi.org/10.1021/acs.jmedchem.4c00802 |
BP-23419 | Propargyl-PEG9-amine | Bauer, P., Pairis, S., Dubois, F., Barbara, A., Dabbous, A., & Maurel, V. (2024). Formation of Colloidal quantum dots-gold nanoparticles aggregates revealed by combined confocal DLS and FCS. https://hal.science/hal-04682755/ |
BP-23419 | Propargyl-PEG9-amine | Bauer, P., Dabbous, A., Pairis, S., Maurel, V., Dubois, F., & Barbara, A. (2024). Click chemistry binding of colloidal quantum dots and gold nanoparticles revealed by combined confocal DLS and FCS. https://hal.science/hal-04684790/ |
BP-22224 | Azido-PEG6-amine | Chueahongthong, F., Chiampanichayakul, S., Viriyaadhammaa, N., Dejkriengkraikul, P., Okonogi, S., Berkland, C., & Anuchapreeda, S. (2024). Cytotoxicity of Doxorubicin-Curcumin Nanoparticles Conjugated with Two Different Peptides (CKR and EVQ) against FLT3 Protein in Leukemic Stem Cells. Polymers, 16(17), 2498. https://doi.org/10.3390/polym16172498 |
BP-23728 | DSPE-PEG4-acid | Park, C., Chung, S., Kim, H., Kim, N., Son, H. Y., Kim, R., ... & Haam, S. (2024). All-in-One Fusogenic Nanoreactor for the Rapid Detection of Exosomal MicroRNAs for Breast Cancer Diagnosis. ACS nano. https://doi.org/10.1021/acsnano.4c08339 |
BP-23164 | Aminooxy-PEG1-propargyl HCl salt | Wang, T., Coshic, K., Badiee, M., McDonald, M. R., Aksimentiev, A., Pollack, L., & Leung, A. K. (2024). Cation-induced intramolecular coil-to-globule transition in poly (ADP-ribose). Nature Communications, 15(1), 7901. https://www.nature.com/articles/s41467-024-51972-9 |
BP-22179 | Biotin-PEG3-oxyamine HCl salt | Wang, T., Coshic, K., Badiee, M., McDonald, M. R., Aksimentiev, A., Pollack, L., & Leung, A. K. (2024). Cation-induced intramolecular coil-to-globule transition in poly (ADP-ribose). Nature Communications, 15(1), 7901. https://www.nature.com/articles/s41467-024-51972-9 |
BP-26285 | endo-BCN-OH | Bu, Y. J., Tijaro-Bulla, S., Cui, H., & Nitz, M. (2024). Oxidation-Controlled, Strain-Promoted Tellurophene-Alkyne Cycloaddition (OSTAC): A Bioorthogonal Tellurophene-Dependent Conjugation Reaction. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.4c07275 |
BP-26474 | C12-200 | Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583. https://academic.oup.com/jpp/article/76/12/1572/7816331 |
BP-26474 | C12-200 | Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV. https://lib.ugent.be/catalog/rug01:003212736 |
BP-26474 | C12-200 | Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339. https://www.mdpi.com/2076-393X/13/4/339 |
BP-21325 | PEG400 | Tappy, E., Shi, H., Pruszynski, J., & Florian-Rodriguez, M. (2024). Use of the senolytics dasatinib and quercetin for prevention of pelvic organ prolapse in a mouse animal model. Aging (Albany NY), 16(19), 12685. https://pmc.ncbi.nlm.nih.gov/articles/PMC11501376/ |
BP-23772 | DBCO-PEG4-DBCO | Zivkovic, M., Pols-van Veen, E., van der Vegte, V., Sebastian, S. A., de Moor, A. S., Korporaal, S. J., ... & Zhang, H. (2024). Functional characterization of a nanobody-based glycoprotein VI-specific platelet agonist. Research and Practice in Thrombosis and Haemostasis, 8(7), 102582. https://www.sciencedirect.com/science/article/pii/S2475037924002772 |
BP-25177 | 4arm-Succinimidyl Glutarate-PEG, MW 20,000 | Pantl, O., Chiovini, B., Szalay, G., Turczel, G., Kovács, E., Mucsi, Z., ... & Cseri, L. (2024). Seeing and cleaving: turn-off fluorophore uncaging and its application in hydrogel photopatterning and traceable neurotransmitter photocages. ACS Applied Materials & Interfaces, 16(41), 55107-55117. https://pubs.acs.org/doi/full/10.1021/acsami.4c10861 |
BP-40215 | BP Lipid 312 | Chen, K., Han, H., Zhao, S., Xu, B., Yin, B., Lawanprasert, A., ... & Doudna, J. A. (2024). Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nature Biotechnology, 1-13. https://www.nature.com/articles/s41587-024-02437-3 |
BP-22320 | t-boc-N-amido-PEG7-amine | Vlasenko, Y. A., To, A. J., Fortier, T., Evans, N. M., Lindsay, C. J., Palermo, P. J., ... & Murphy, G. K. (2024). Synthesis and Application of D?and 13C?Labelled tert?Butyl Hoechst Dye. Journal of Labelled Compounds and Radiopharmaceuticals, 67(12-13), 425-430. https://doi.org/10.1002/jlcr.4123 |
BP-23761 | m-PEG-Lys-NHS ester, MW 20,000 | Rowe, T., Fletcher, A., Svoboda, P., Pohl, J., Hatta, Y., Jasso, G., ... & Ross, T. M. (2024). Interferon as an immunoadjuvant to enhance antibodies following influenza B infection and vaccination in ferrets. npj Vaccines, 9(1), 199. https://www.nature.com/articles/s41541-024-00973-2 |
BP-23392 | Alkynyl Palmitic Acid | Zhang, N., Liu, J., Guo, R., Yan, L., Yang, Y., Shi, C., ... & Xu, D. (2024). Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway. Molecular Cell, 84(22), 4419-4435. https://www.cell.com/molecular-cell/fulltext/S1097-2765(24)00825-6 |
BP-29918 | DSPE-PEG-endo-BCN, MW 5,000 | Sarrami, N. (2024). Development of immuno and nano PET/SPECT probes: towards novel theranostics for EGFR positive solid tumors. https://era.library.ualberta.ca/items/413fe37f-8c9f-40fe-aba7-7228380d270d |
BP-50005 | MagicLink™ Oligo Antibody Conjugation Kit (1 x 100 ug) | Wang, T., Wang, X., Luo, S., Zhang, P., Li, N., Chen, C., ... & Huang, R. P. (2024). Constructions, Purifications and Applications of DNA-Antibody Conjugates: A Review. ACS omega, 9(49), 47951-47963. https://pubs.acs.org/doi/full/10.1021/acsomega.4c07714 |
BP-20310 | C13-113-tetra-tail | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-28064 | L319 | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25706 | DOTMA | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25622 | DOTAP | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-26173 | DOPE-PEG-Amine, MW 5,000 | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25690 | DSPE-PEG-Biotin, MW 5,000, sodium salt | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-28050 | DSPE-PEG-Mannose, MW 5,000 | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-26332 | POPC | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25709 | DOPE | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25623 | DSPC | Kim, B., Seo, H. W., Lee, K., Yong, D., Park, Y. K., Lee, Y., ... & Ryu, C. M. (2024). Lipid Nanoparticle?Mediated CRISPR?Cas13a Delivery for the Control of Bacterial Infection. Advanced Healthcare Materials, 2403281. https://doi.org/10.1002/adhm.202403281 |
BP-25623 | DSPC | Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24. https://www.nature.com/articles/s41541-025-01079-z |
BP-21865 | Azido-PEG8-PFP ester | Allen, K. J., Frank, C., Jiao, R., Malo, M. E., Bello, M., De Nardo, L., ... & Dadachova, E. (2024). In Vitro and In Vivo Comparison of Random versus Site-Specific Conjugation of Bifunctional Chelating Agents to the CD33-Binding Antibody for Use in Alpha-and Beta-Radioimmunotherapy. ACS omega, 9(50), 50000-50011. https://pubs.acs.org/doi/full/10.1021/acsomega.4c09450 |
BP-25740 | Methyltetrazine-PEG4-DBCO | Fernández de Santaella Sunyer, J. (2024). High-Throughput Engineering of Human Arginase-1: Integrating Enzymatic Reporter Cascades, Genetic Code Expansion, and Site-Specific Bioconjugation (Doctoral dissertation, ETH Zurich). https://www.research-collection.ethz.ch/handle/20.500.11850/710487?show=full |
BP-25742 | Methyltetrazine-PEG8-DBCO | Fernández de Santaella Sunyer, J. (2024). High-Throughput Engineering of Human Arginase-1: Integrating Enzymatic Reporter Cascades, Genetic Code Expansion, and Site-Specific Bioconjugation (Doctoral dissertation, ETH Zurich). https://www.research-collection.ethz.ch/handle/20.500.11850/710487?show=full |
BP-25743 | Methyltetrazine-PEG23-DBCO | Fernández de Santaella Sunyer, J. (2024). High-Throughput Engineering of Human Arginase-1: Integrating Enzymatic Reporter Cascades, Genetic Code Expansion, and Site-Specific Bioconjugation (Doctoral dissertation, ETH Zurich). https://www.research-collection.ethz.ch/handle/20.500.11850/710487?show=full |
BP-25705 | (Methyltetrazine-PEG10)-Tri-(Azide-PEG10-ethoxymethyl)-methane | Fernández de Santaella Sunyer, J. (2024). High-Throughput Engineering of Human Arginase-1: Integrating Enzymatic Reporter Cascades, Genetic Code Expansion, and Site-Specific Bioconjugation (Doctoral dissertation, ETH Zurich). https://www.research-collection.ethz.ch/handle/20.500.11850/710487?show=full |
BP-28292 | oleic acid-d9 | Johnson, S., Smith, R., Thomas, E., & Giorio, C. (2024). Method for Quantification of Fatty Acids in Ice Cores and Sea-Ice Cores Using Liquid Chromatography High-Resolution Mass Spectrometry. ACS Measurement Science Au. https://pubs.acs.org/doi/full/10.1021/acsmeasuresciau.4c00054 |
BP-20611 | Bis-PEG3-NHS ester | Zaleski, M. H., Chase, L. S., Hood, E. D., Wang, Z., Nong, J., Espy, C. L., ... & Brenner, J. S. (2025). Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. Advanced Materials, 37(5), 2409945. https://doi.org/10.1002/adma.202409945 |
BP-24286 | TAMRA-PEG2-Maleimide | Zaleski, M. H., Chase, L. S., Hood, E. D., Wang, Z., Nong, J., Espy, C. L., ... & Brenner, J. S. (2025). Conjugation Chemistry Markedly Impacts Toxicity and Biodistribution of Targeted Nanoparticles, Mediated by Complement Activation. Advanced Materials, 37(5), 2409945. https://doi.org/10.1002/adma.202409945 |
BP-25669 | N-(Mal-PEG6)-N-bis(PEG3-Boc) | Emmert, M. H., Yang, C., Kwan, E. E., Chmielowski, R., Kilgore, B., VanAernum, Z. L., ... & Desai, J. (2024). High-Throughput Experimentation Reveals Scope and Limitations of Selective Phosphine Reductants and Enables One-Pot mAb Reduction/Conjugation. Organic Process Research & Development, 29(1), 79-91. https://pubs.acs.org/doi/abs/10.1021/acs.oprd.4c00343 |
BP-24132 | Bromo-PEG1-azide | Aditham, A. J. (2024). Site-specific chemical and topological modifications to augment mRNA therapeutic potential (Doctoral dissertation, Massachusetts Institute of Technology). https://dspace.mit.edu/handle/1721.1/157875 |
BP-29593 | DLin-DMA | Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109. https://www.sciencedirect.com/science/article/pii/S0378517324013437 |
BP-22459 | Sulfo-Cy5 DBCO | Kraichely, K. N., Sandall, C. R., Liang, B., Kiessling, V., & Tamm, L. K. (2025). Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion. Biophysical Journal. https://www.cell.com/biophysj/fulltext/S0006-3495(24)04129-8 |
BP-22458 | Sulfo-Cy3 DBCO | Kraichely, K. N., Sandall, C. R., Liang, B., Kiessling, V., & Tamm, L. K. (2025). Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion. Biophysical Journal. https://www.cell.com/biophysj/fulltext/S0006-3495(24)04129-8 |
BP-23458 | Propargyl-PEG7-NHS ester | Hertle, L., Ko, H., Gantenbein, V., Ye, H., Veciana, A., Landers, F. C., ... & Pané, S. (2025). A covalently bonded exchange coupled nanomagnet-based hydrogel composite for microrobotic applications. https://chemrxiv.org/engage/chemrxiv/article-details/678398a581d2151a02c658b7 |
BP-20693 | Azido-PEG3-alcohol | Liu, X., Schreiber, A. C., Astudillo Potes, M. D., Dashtdar, B., Hamouda, A. M., Rezaei, A., ... & Lu, L. (2025). Bone Enzyme-Responsive Biodegradable Poly (propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering. Biomacromolecules. https://pubs.acs.org/doi/full/10.1021/acs.biomac.4c00999 |
BP-24415 | endo-BCN-PEG4-Val-Cit-PAB-MMAE | Hansen, A. H., Andersen, K. I., Xin, L., Krigslund, O., Behrendt, N., Engelholm, L. H., ... & Qvortrup, K. (2025). A HER2 Specific Nanobody–Drug Conjugate: Site-Selective Bioconjugation and In Vitro Evaluation in Breast Cancer Models. Molecules, 30(2), 391. https://doi.org/10.3390/molecules30020391 |
BP-24434 | MC-Val-Cit-Doxorubicin | Nervig, C. S., Rice, M., Marelli, M., Christie, R. J., & Owen, S. C. (2025). Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity. Bioconjugate Chemistry. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00398 |
BP-20523 | Amino-PEG2-acid | Lechner, A., Jordan, P. A., da Cruz, G. C. M., Lamson, J., Gordon, J., Okada, B. K., ... & Burk, M. J. (2025). Overcoming Immune Checkpoint Inhibitor Resistance via Potent and Selective Dual αvβ6/8 Inhibitors Based on Engineered Lasso Peptides. bioRxiv, 2025-01. https://doi.org/10.1101/2025.01.28.635346 |
BP-23900 | FAM NHS ester, 6-isomer | van Neer, R. H., Dranchak, P. K., Aitha, M., Liu, L., Carlson, E. K., Jacobsen, I. E., ... & Inglese, J. (2025). Active-and Allosteric-Site Cyclic Peptide Inhibitors of Secreted M. tuberculosis Chorismate Mutase. ACS Infectious Diseases. https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.4c00798 |
BP-25603 | 5-TAMRA NHS Ester | van Neer, R. H., Dranchak, P. K., Aitha, M., Liu, L., Carlson, E. K., Jacobsen, I. E., ... & Inglese, J. (2025). Active-and Allosteric-Site Cyclic Peptide Inhibitors of Secreted M. tuberculosis Chorismate Mutase. ACS Infectious Diseases. https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.4c00798 |
BP-28747 | MC-Val-Ala-NHS ester | Tran, X., Mulac, D., & Langer, K. (2025). How to deliver an unselective drug selectively: Novel puromycin-loaded albumin nanoparticles for active targeting and their controllable effectiveness. Journal of Drug Delivery Science and Technology, 106701. https://www.sciencedirect.com/science/article/pii/S1773224725001042 |
BP-23444 | m-PEG-Azide, MW 5,000 | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-26353 | m-PEG-methyltetrazine, MW 5,000 | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-26353 | m-PEG-methyltetrazine, MW 5,000 | Nagao, K., Vargas Paniagua, E., Lei, K., Beckham, J. L., Worthington, P., Manthey, M., ... & Anikeeva, P. (2025). Adeno-associated viruses escort nanomaterials to specific cells and tissues. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.04.647267 |
BP-23867 | Methyltetrazine-PEG8-NHS ester | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-22424 | Sulfo-Cy5-TCO | Knappe, G. A., Gorman, J., Bigley, A. N., Harvey, S. P., & Bathe, M. (2025). Heterovalent Click Reactions on DNA Origami. Bioconjugate Chemistry, 36(3), 476-485. https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.4c00552 |
BP-23981 | MC-MMAF | Pickering, A. J., Lamson, N. G., Marand, M. H., Straehla, J. P., & Hammond, P. T. (2025). Convection-Enhanced Delivery of Auristatin-Conjugated Layer-by-Layer Nanoparticles for Glioblastoma Treatment. Journal of the American Chemical Society. https://pubs.acs.org/doi/abs/10.1021/jacs.4c16898 |
BP-23114 | Doxorubicin HCl | Haroon, M., Sultana, S., Najibi, S. A., Wang, E. T., Michaelson, A., Al Muied, P. S., ... & Mancini, R. J. (2025). Efflux-Enhanced Imidazoquinolines To Exploit Chemoresistance. ACS omega. https://pubs.acs.org/doi/full/10.1021/acsomega.4c11297 |
BP-40531 | BP Fluor 647 NHS Ester | Kapcan, E., Krygier, K., da Luz, M., Serniuck, N. J., Zhang, A., Bramson, J., & Rullo, A. F. (2025). Mimicry of molecular glues using dual covalent chimeras. Nature Communications, 16(1), 2855. https://www.nature.com/articles/s41467-025-58083-z |
BP-22294 | DBCO-PEG4-Maleimide | Li, J., Al Faruque, H., Li, S., Sima, M., Sborov, D., Hu-Lieskovan, S., ... & Yang, J. (2025). PD-L1 targeted antibody-polymer-Epirubicin conjugate prolongs survival in a preclinical murine model of advanced ovarian cancer. Journal of Controlled Release, 113682. https://www.sciencedirect.com/science/article/pii/S0168365925003025 |
BP-25103 | DBCO-PEG23-amine | Kharazmi, J., Brody, T., & Moshfegh, C. (2025). Targeting Regulatory Factors Associated with the Drosophila Myc cis-Elements by Reporter Expression, Gel Shift Assay, and Mass Spectrometric Protein Identification. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.04.647281 |
BP-23970 | TCO-PEG24-NHS ester | Nagao, K., Vargas Paniagua, E., Lei, K., Beckham, J. L., Worthington, P., Manthey, M., ... & Anikeeva, P. (2025). Adeno-associated viruses escort nanomaterials to specific cells and tissues. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.04.647267 |
BP-27872 | m-PEG4-TCO | Nagao, K., Vargas Paniagua, E., Lei, K., Beckham, J. L., Worthington, P., Manthey, M., ... & Anikeeva, P. (2025). Adeno-associated viruses escort nanomaterials to specific cells and tissues. bioRxiv, 2025-04. https://doi.org/10.1101/2025.04.04.647267 |
BP-50010 | MagicLink™ Protein Protein Crosslinking Kit (3 x 100 ug) | Yee, K. K. L., Kumamoto, J., Inomata, D., Suzuki, N., Harada, R., & Yumoto, N. (2025). Harnessing Synaptic Vesicle Release and Recycling with Antibody Shuttle for Targeted Delivery of Therapeutics to Neurons. Molecular Therapy Methods & Clinical Development. https://www.cell.com/molecular-therapy-family/methods/fulltext/S2329-0501(25)00071-3 |
BP-22115 | Biotin-PEG4-amine | Beitello, E., Osei, K., Kobulnicky, T., Breausche, F., Friesen, J. A., & Driskell, J. D. (2025). Oriented Surface Immobilization of Antibodies Using Enzyme-Mediated Site-Specific Biotinylation for Enhanced Antigen-Binding Capacity. Langmuir. https://pubs.acs.org/doi/full/10.1021/acs.langmuir.5c00656 |