D-Lin-MC3-DMA

D-Lin-MC3-DMA


D-Lin-MC3-DMA (MC3) is a potent synthetic ionizable lipid. Its full name is (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate. D-Lin-MC3-DMA has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs) for the delivery of siRNA, mRNA, DNA. The pKa is 6.44. Reagent grade, for research use only.

Molecular structure of the compound BP-25497
    • Unit
    • Price
    • Qty
    • 25 MG
    • $260.00
    • 50 MG
    • $450.00
    • 100 MG
    • $650.00
    • 250 MG
    • $980.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  2. Chiesa, E., Caimi, A., Bellotti, M., Giglio, A., Conti, B., Dorati, R., ... & Genta, I. (2024). Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids. Pharmaceutics, 16(4), 507.
    https://www.mdpi.com/1999-4923/16/4/507
  3. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  4. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  5. Giménez-Warren, J., Peña, Á., Heredero, J., Mata, E., Blandín, B., de Miguel, D., ... & Martínez-Oliván, J. (2024). STAAR Lipids: A Novel Ionizable Lipid Synthetic Platform for Efficient mRNA Delivery In Vivo with Tunable Lung Targeting.
    https://doi.org/10.21203/rs.3.rs-5124244/v1
  6. Han, X., Petrova, V., Song, Y., Cheng, Y. T., Jiang, X., Zhou, H., ... & Shi, J. (2025). Lipid nanoparticle delivery of siRNA to dorsal root ganglion neurons to treat pain. bioRxiv, 2025-01.
    https://www.biorxiv.org/content/10.1101/2025.01.23.633455v1.full
  7. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  8. Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367.
    https://doi.org/10.1016/j.ijpharm.2025.125367
  9. Omo-Lamai, S., Wang, Y., Patel, M. N., Essien, E. O., Shen, M., Majumder, A., ... & Brenner, J. S. (2024). Lipid Nanoparticle-Associated Inflammation is Triggered by Sensing of Endosomal Damage: Engineering Endosomal Escape without Side Effects. bioRxiv, 2024-04.
    https://doi.org/10.1101/2024.04.16.589801
  10. Panja, S., Zaman, L. A., Zhang, C., Patel, M., Gorantla, S., Dash, P. K., & Gendelman, H. E. Lymphoid and CXCR4 Cell Targeted Lipid Nanoparticles Facilitate HIV-1 Proviral DNA Excision. Available at SSRN 5136145.
    https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5136145
  11. Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
    https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433