SM-102

SM-102


SM-102 is a synthetic ionizable lipid which is used in combination with other lipids to form lipid nanoparticles (LNP) for drug delivery. These are used for the delivery of mRNA-based COVID-19 vaccines. The pKa is 6.68. Reagent grade, for research use only.

Molecular structure of the compound BP-25499
    • Unit
    • Price
    • Qty
    • 50 MG
    • $320.00
    • 100 MG
    • $550.00
    • 250 MG
    • $860.00
    • 1 G
    • $1600.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Banda, O., Adams, S. E., Omer, L., Jung, S. K., Said, H., Phoka, T., ... & Kurre, P. (2025). Restoring hematopoietic stem and progenitor cell function in Fancc−/− mice by in situ delivery of RNA lipid nanoparticles. Molecular Therapy Nucleic Acids, 36(1).
    https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00310-X
  2. Bhattacharya, A., Jan, L., Burlak, O., Li, J., Upadhyay, G., Williams, K., ... & Dey, A. K. (2024). Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. npj Vaccines, 9(1), 72.
    https://www.nature.com/articles/s41541-024-00865-5
  3. Binici, B., Borah, A., Watts, J. A., McLoughlin, D., & Perrie, Y. (2025). The influence of citrate buffer molarity on mRNA-LNPs: Exploring factors beyond general critical quality attributes. International Journal of Pharmaceutics, 668, 124942.
    https://doi.org/10.1016/j.ijpharm.2024.124942
  4. Binici, B., Rattray, Z., Schroeder, A., & Perrie, Y. (2024). The role of biological sex in pre-clinical (mouse) mRNA vaccine studies. Vaccines, 12(3), 282.
    https://doi.org/10.3390/vaccines12030282
  5. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  6. Buckley, M., Arainga, M., Maiorino, L., Pires, I. S., Kim, B. J., Kaczmarek Michaels, K., ... & Irvine, D. J. (2024). Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. bioRxiv, 2024-06.
    https://doi.org/10.1101/2024.06.21.600088
  7. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  8. De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
    https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208
  9. Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
    https://www.mdpi.com/1999-4923/17/5/566
  10. Ho?ubowicz, R., Du, S. W., Felgner, J., Smidak, R., Choi, E. H., Palczewska, G., ... & Palczewski, K. (2024). Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nature Biomedical Engineering, 1-22.
    https://www.nature.com/articles/s41551-024-01296-2
  11. Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
    https://academic.oup.com/jpp/article/76/12/1572/7816331
  12. Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
    https://www.mdpi.com/2076-393X/13/4/370
  13. Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728.
    https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6
  14. Jalili, S., Hosn, R. R., Ko, W. C., Afshari, K., Dhinakaran, A. K., Chaudhary, N., ... & Irvine, D. J. (2025). Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. medRxiv, 2025-03.
    https://doi.org/10.1101/2025.03.17.25324099
  15. Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
    https://www.sciencedirect.com/science/article/pii/S0378517324013437
  16. Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
    https://doi.org/10.1101/2023.11.09.565872
  17. Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24.
    https://www.nature.com/articles/s41541-025-01079-z
  18. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  19. McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a
  20. Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2024). Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. bioRxiv, 2024-07.
    https://doi.org/10.1101/2024.07.05.602305
  21. Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2025). Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. Science Advances, 11(15), eadr2631.
    https://www.science.org/doi/full/10.1126/sciadv.adr2631
  22. Meulewaeter, S., Aernout, I., Deprez, J., Engelen, Y., De Velder, M., Franceschini, L., ... & Lentacker, I. (2024). Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. Journal of Controlled Release, 370, 379-391.
    https://www.sciencedirect.com/science/article/pii/S0168365924002815
  23. Ogawa, K., Aikawa, O., Tagami, T., Ito, T., Tahara, K., Kawakami, S., & Ozeki, T. (2024). Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. International Journal of Pharmaceutics, 124632.
    https://www.sciencedirect.com/science/article/abs/pii/S0378517324008664
  24. Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367.
    https://doi.org/10.1016/j.ijpharm.2025.125367
  25. Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023
    https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf
  26. Ruppl, A., Kiesewetter, D., Koell-Weber, M., Lemazurier, T., Süss, R., & Allmendinger, A. (2025). Formulation screening of lyophilized mRNA-lipid nanoparticles. International Journal of Pharmaceutics, 125272.
    https://www.sciencedirect.com/science/article/pii/S0378517325001085
  27. Ruppl, A., Kiesewetter, D., Strütt, F., Köll-Weber, M., Süss, R., & Allmendinger, A. (2024). Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 198, 114265.
    https://www.sciencedirect.com/science/article/pii/S0939641124000912
  28. Saraswat, A., Vemana, H. P., Dukhande, V., & Patel, K. (2024). Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. Molecular Therapy-Nucleic Acids, 35(3).
    https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00179-3
  29. Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023
    https://www.researchsquare.com/article/rs-2649244/v1
  30. Shah, N., Soma, S. R., Quaye, M. B., Mahmoud, D., Ahmed, S., Malkoochi, A., & Obaid, G. (2024). A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin–Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS Applied Bio Materials.
    https://pubs.acs.org/doi/full/10.1021/acsabm.4c00316
  31. Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
    https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433
  32. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://doi.org/10.1101/2025.04.21.649878