SM-102
SM-102 is a synthetic ionizable lipid which is used in combination with other lipids to form lipid nanoparticles (LNP) for drug delivery. These are used for the delivery of mRNA-based COVID-19 vaccines. The pKa is 6.68. Reagent grade, for research use only.

-
Catalog:
BP-25499
-
Name:
SM-102
-
Formula:
C44H87NO5
-
MW:
710.2
-
CAS:
2089251-47-6
-
Purity:
98%
-
Ships Within:
24 Hours
-
Storage Condition:
-20°C
-
Solubility:
Ethanol, DMSO, DMF
-
Shipping:
Ambient Temperature
-
Availability:
In Stock
-
NMR:
View
-
SDS:
View
Product Citations
- Banda, O., Adams, S. E., Omer, L., Jung, S. K., Said, H., Phoka, T., ... & Kurre, P. (2025). Restoring hematopoietic stem and progenitor cell function in Fancc−/− mice by in situ delivery of RNA lipid nanoparticles. Molecular Therapy Nucleic Acids, 36(1).
https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00310-X - Bhattacharya, A., Jan, L., Burlak, O., Li, J., Upadhyay, G., Williams, K., ... & Dey, A. K. (2024). Potent and long-lasting humoral and cellular immunity against varicella zoster virus induced by mRNA-LNP vaccine. npj Vaccines, 9(1), 72.
https://www.nature.com/articles/s41541-024-00865-5 - Binici, B., Borah, A., Watts, J. A., McLoughlin, D., & Perrie, Y. (2025). The influence of citrate buffer molarity on mRNA-LNPs: Exploring factors beyond general critical quality attributes. International Journal of Pharmaceutics, 668, 124942.
https://doi.org/10.1016/j.ijpharm.2024.124942 - Binici, B., Rattray, Z., Schroeder, A., & Perrie, Y. (2024). The role of biological sex in pre-clinical (mouse) mRNA vaccine studies. Vaccines, 12(3), 282.
https://doi.org/10.3390/vaccines12030282 - Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
https://doi.org/10.1016/j.ejpb.2025.114726 - Buckley, M., Arainga, M., Maiorino, L., Pires, I. S., Kim, B. J., Kaczmarek Michaels, K., ... & Irvine, D. J. (2024). Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates. bioRxiv, 2024-06.
https://doi.org/10.1101/2024.06.21.600088 - Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
https://lib.ugent.be/catalog/rug01:003212736 - De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208 - Forrester, J., Davidson, C. G., Blair, M., Donlon, L., McLoughlin, D. M., Obiora, C. R., ... & Perrie, Y. (2025). Low-cost microfluidic mixers: are they up to the task?. Pharmaceutics, 17(5), 566.
https://www.mdpi.com/1999-4923/17/5/566 - Ho?ubowicz, R., Du, S. W., Felgner, J., Smidak, R., Choi, E. H., Palczewska, G., ... & Palczewski, K. (2024). Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nature Biomedical Engineering, 1-22.
https://www.nature.com/articles/s41551-024-01296-2 - Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
https://academic.oup.com/jpp/article/76/12/1572/7816331 - Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
https://www.mdpi.com/2076-393X/13/4/370 - Jalil, S., Keskinen, T., Juutila, J., Maldonado, R. S., Euro, L., Suomalainen, A., ... & Wartiovaara, K. (2024). Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. The American Journal of Human Genetics, 111(4), 714-728.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00077-6 - Jalili, S., Hosn, R. R., Ko, W. C., Afshari, K., Dhinakaran, A. K., Chaudhary, N., ... & Irvine, D. J. (2025). Leveraging tissue-resident memory T cells for non-invasive immune monitoring via microneedle skin patches. medRxiv, 2025-03.
https://doi.org/10.1101/2025.03.17.25324099 - Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
https://www.sciencedirect.com/science/article/pii/S0378517324013437 - Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
https://doi.org/10.1101/2023.11.09.565872 - Li, Y., Ambati, S., Meagher, R. B., & Lin, X. (2025). Developing mRNA lipid nanoparticle vaccine effective for cryptococcosis in a murine model. npj Vaccines, 10(1), 24.
https://www.nature.com/articles/s41541-025-01079-z - Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
https://www.mdpi.com/2076-393X/13/4/339 - McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a - Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2024). Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. bioRxiv, 2024-07.
https://doi.org/10.1101/2024.07.05.602305 - Meany, E. L., Klich, J. H., Jons, C. K., Mao, T., Chaudhary, N., Utz, A., ... & Appel, E. (2025). Generation of an inflammatory niche in a hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. Science Advances, 11(15), eadr2631.
https://www.science.org/doi/full/10.1126/sciadv.adr2631 - Meulewaeter, S., Aernout, I., Deprez, J., Engelen, Y., De Velder, M., Franceschini, L., ... & Lentacker, I. (2024). Alpha-galactosylceramide improves the potency of mRNA LNP vaccines against cancer and intracellular bacteria. Journal of Controlled Release, 370, 379-391.
https://www.sciencedirect.com/science/article/pii/S0168365924002815 - Ogawa, K., Aikawa, O., Tagami, T., Ito, T., Tahara, K., Kawakami, S., & Ozeki, T. (2024). Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. International Journal of Pharmaceutics, 124632.
https://www.sciencedirect.com/science/article/abs/pii/S0378517324008664 - Ogawa, K., Tagami, T., Miyake, S., & Ozeki, T. (2025). Choice of organic solvent affects function of mRNA-LNP; pyridine produces highly functional mRNA-LNP. International Journal of Pharmaceutics, 673, 125367.
https://doi.org/10.1016/j.ijpharm.2025.125367 - Qin, Jane, Ju Hyeong Jeon, Jiangsheng Xu, Laura Katherine Langston, Ramesh Marasini, Stephanie Mou, Brian Montoya et al. Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine. Frontiers in Immunology. 2023
https://www.researchgate.net/profile/Ramesh-Marasini/publication/369688271_Design_and_preclinical_evaluation_of_a_universal_SARS-CoV-2_mRNA_vaccine/links/642786ee315dfb4ccec16ec4/Design-and-preclinical-evaluation-of-a-universal-SARS-CoV-2-mRNA-vaccine.pdf - Ruppl, A., Kiesewetter, D., Koell-Weber, M., Lemazurier, T., Süss, R., & Allmendinger, A. (2025). Formulation screening of lyophilized mRNA-lipid nanoparticles. International Journal of Pharmaceutics, 125272.
https://www.sciencedirect.com/science/article/pii/S0378517325001085 - Ruppl, A., Kiesewetter, D., Strütt, F., Köll-Weber, M., Süss, R., & Allmendinger, A. (2024). Don’t shake it! Mechanical stress testing of mRNA-lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 198, 114265.
https://www.sciencedirect.com/science/article/pii/S0939641124000912 - Saraswat, A., Vemana, H. P., Dukhande, V., & Patel, K. (2024). Novel gene therapy for drug-resistant melanoma: Synergistic combination of PTEN plasmid and BRD4 PROTAC-loaded lipid nanocarriers. Molecular Therapy-Nucleic Acids, 35(3).
https://www.cell.com/molecular-therapy-family/nucleic-acids/fulltext/S2162-2531(24)00179-3 - Saraswat, Aishwarya, and Ketan Patel. Delineating effect of cationic head group and preparation method on transfection versus toxicity of lipid-based nanoparticles for gene delivery. PREPRINT. 2023
https://www.researchsquare.com/article/rs-2649244/v1 - Shah, N., Soma, S. R., Quaye, M. B., Mahmoud, D., Ahmed, S., Malkoochi, A., & Obaid, G. (2024). A Physiochemical, In Vitro, and In Vivo Comparative Analysis of Verteporfin–Lipid Conjugate Formulations: Solid Lipid Nanoparticles and Liposomes. ACS Applied Bio Materials.
https://pubs.acs.org/doi/full/10.1021/acsabm.4c00316 - Warminski, M., Depaix, A., Ziemkiewicz, K., Spiewla, T., Zuberek, J., Drazkowska, K., ... & Jemielity, J. (2024). Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Research, gkae763.
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkae763/7753433 - Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
https://doi.org/10.1101/2025.04.21.649878