ALC-0315
ALC-0315 is a synthetic amino lipid. It is a colorless oil. ALC-0315 is one of four components that form lipid nanoparticles (LNPs) in mRNA-based COVID-19 vaccines. It encapsulates and protects the fragile mRNA which is the active ingredient in these drugs. IUPAC name: [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate). The pKa is 6.09. Reagent grade, for research use only.

-
Catalog:
BP-25498
-
Name:
ALC-0315
-
Formula:
C48H95NO5
-
MW:
766.3
-
CAS:
2036272-55-4
-
Purity:
98%
-
Ships Within:
24 Hours
-
Storage Condition:
-20°C
-
Solubility:
Ethanol, DMSO, DMF
-
Shipping:
Ambient Temperature
-
Availability:
In Stock
-
NMR:
View
-
SDS:
View
Product Citations
- Boldyrev, I.A., Shendrikov, V.P., Vostrova, A.G. et al. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem 49, 412–415 (2023). https://doi.org/10.1134/S1068162023020061
https://link.springer.com/article/10.1134/S1068162023020061 - Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
https://doi.org/10.1016/j.ejpb.2025.114726 - Casmil, I. C., Bathula, N. V., Huang, C., Wayne, C. J., Cairns, E. S., Friesen, J. J., ... & Blakney, A. K. (2025). Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Molecular Therapy, 33(2), 514-528.
https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(24)00855-4 - Chen, S. P., Wang, S., Liao, S., & Blakney, A. K. (2024). Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS Bio & Med Chem Au.
https://pubs.acs.org/doi/full/10.1021/acsbiomedchemau.4c00085 - Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
https://lib.ugent.be/catalog/rug01:003212736 - De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208 - Grigoriev, V., Korzun, T., Moses, A. S., Jozic, A., Zhu, X., Kim, J., ... & Taratula, O. (2024). Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS nano, 18(49), 33330-33347.
https://pubs.acs.org/doi/full/10.1021/acsnano.4c06930 - Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
https://academic.oup.com/jpp/article/76/12/1572/7816331 - Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
https://www.mdpi.com/2076-393X/13/4/370 - Janssens, S., Bosteels, V., Marechal, S., Cloots, E., Van Heddegem, L., Tavernier, S., ... & Le Goff, W. (2024). The unfolded protein sensor IRE1a is essential for homeostatic dendritic cell maturation.
https://www.researchsquare.com/article/rs-4763670/v1 - Janssens, S., Rennen, S., Bosteels, V., De Nolf, C., Van Lil, K., Maréchal, S., ... & Lentacker, I. (2024). Lipid nanoparticles as a tool to dissect dendritic cell maturation pathways.
https://doi.org/10.21203/rs.3.rs-5461735/v1 - Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
https://www.sciencedirect.com/science/article/pii/S0378517324013437 - Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., Ivanov, R., & Reshetnikov, V. (2023). Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules, 13(11), 1677.
https://www.mdpi.com/2218-273X/13/11/1677 - Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
https://doi.org/10.1101/2023.11.09.565872 - Li, Zhongyu, Xue?Qing Zhang, William Ho, Xin Bai, Dabbu Kumar Jaijyan, Fengqiao Li, Ranjeet Kumar et al. "Lipid?Polymer Hybrid “Particle?in?Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID?19 Vaccines. Advanced Functional Materials. 2022
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202204462 - Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
https://www.mdpi.com/2076-393X/13/4/339 - McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a - Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888.
https://www.mdpi.com/1422-0067/25/2/888 - Shepelkova, G. S., Reshetnikov, V. V., Avdienko, V. G., Sheverev, D. V., Yeremeev, V. V., & Ivanov, R. A. IMPACT OF UNTRANSLATED mRNA SEQUENCES ON IMMUNOGENICITY OF mRNA VACCINES AGAINST M. TUBERCULOSIS IN MICE.
https://www.researchgate.net/profile/V-Yeremeev/publication/377479822_Impact_of_untranslated_mRNA_sequences_on_immunogenicity_of_mRNA_vaccines_against_M_tuberculosis_in_mice/links/65c1cae634bbff5ba7ef9969/Impact-of-untranslated-mRNA-sequences-on-immunogenicity-of-mRNA-vaccines-against-M-tuberculosis-in-mice.pdf - Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
https://doi.org/10.1101/2025.04.21.649878