ALC-0315

ALC-0315


ALC-0315 is a synthetic amino lipid. It is a colorless oil. ALC-0315 is one of four components that form lipid nanoparticles (LNPs) in mRNA-based COVID-19 vaccines. It encapsulates and protects the fragile mRNA which is the active ingredient in these drugs. IUPAC name: [(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate). The pKa is 6.09. Reagent grade, for research use only.

Molecular structure of the compound BP-25498
    • Unit
    • Price
    • Qty
    • 50 MG
    • $285.00
    • 100 MG
    • $350.00
    • 250 MG
    • $700.00
    • 1 G
    • $1600.00

Usually ships within 24 hours.


Would you like to inquire about custom quantity?
Inquire

Product Citations


  1. Boldyrev, I.A., Shendrikov, V.P., Vostrova, A.G. et al. A Route to Synthesize Ionizable Lipid ALC-0315, a Key Component of the mRNA Vaccine Lipid Matrix. Russ J Bioorg Chem 49, 412–415 (2023). https://doi.org/10.1134/S1068162023020061
    https://link.springer.com/article/10.1134/S1068162023020061
  2. Borah, A., Giacobbo, V., Binici, B., Baillie, R., & Perrie, Y. (2025). From in vitro to in Vivo: The Dominant role of PEG-Lipids in LNP performance. European Journal of Pharmaceutics and Biopharmaceutics, 114726.
    https://doi.org/10.1016/j.ejpb.2025.114726
  3. Casmil, I. C., Bathula, N. V., Huang, C., Wayne, C. J., Cairns, E. S., Friesen, J. J., ... & Blakney, A. K. (2025). Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Molecular Therapy, 33(2), 514-528.
    https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(24)00855-4
  4. Chen, S. P., Wang, S., Liao, S., & Blakney, A. K. (2024). Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS Bio & Med Chem Au.
    https://pubs.acs.org/doi/full/10.1021/acsbiomedchemau.4c00085
  5. Coussens, E. Exploring the potential of CRISPR/Cas9 lipid nanoparticles to cure HIV.
    https://lib.ugent.be/catalog/rug01:003212736
  6. De Peña, A. C., Zimmer, D., Gutterman-Johns, E., Chen, N. M., Tripathi, A., & Bailey-Hytholt, C. M. (2024). Electrophoretic Microfluidic Characterization of mRNA-and pDNA-Loaded Lipid Nanoparticles. ACS Applied Materials & Interfaces.
    https://pubs.acs.org/doi/abs/10.1021/acsami.4c00208
  7. Grigoriev, V., Korzun, T., Moses, A. S., Jozic, A., Zhu, X., Kim, J., ... & Taratula, O. (2024). Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles. ACS nano, 18(49), 33330-33347.
    https://pubs.acs.org/doi/full/10.1021/acsnano.4c06930
  8. Hussain, M., Binici, B., O’Connor, L., & Perrie, Y. (2024). Production of mRNA lipid nanoparticles using advanced crossflow micromixing. Journal of Pharmacy and Pharmacology, 76(12), 1572-1583.
    https://academic.oup.com/jpp/article/76/12/1572/7816331
  9. Hussain, M., Ferguson-Ugorenko, A., Macfarlane, R., Orr, N., Clarke, S., Wilkinson, M. J., ... & Perrie, Y. (2025). Mind the age gap: expanding the age window for mRNA vaccine testing in mice. Vaccines, 13(4), 370.
    https://www.mdpi.com/2076-393X/13/4/370
  10. Janssens, S., Bosteels, V., Marechal, S., Cloots, E., Van Heddegem, L., Tavernier, S., ... & Le Goff, W. (2024). The unfolded protein sensor IRE1a is essential for homeostatic dendritic cell maturation.
    https://www.researchsquare.com/article/rs-4763670/v1
  11. Janssens, S., Rennen, S., Bosteels, V., De Nolf, C., Van Lil, K., Maréchal, S., ... & Lentacker, I. (2024). Lipid nanoparticles as a tool to dissect dendritic cell maturation pathways.
    https://doi.org/10.21203/rs.3.rs-5461735/v1
  12. Khalifeh, M., Oude Egberink, R., Roverts, R., & Brock, R. (2025). Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery. International Journal of Pharmaceutics, 670, 125109.
    https://www.sciencedirect.com/science/article/pii/S0378517324013437
  13. Kirshina, A., Vasileva, O., Kunyk, D., Seregina, K., Muslimov, A., Ivanov, R., & Reshetnikov, V. (2023). Effects of Combinations of Untranslated-Region Sequences on Translation of mRNA. Biomolecules, 13(11), 1677.
    https://www.mdpi.com/2218-273X/13/11/1677
  14. Lewis, M. M., Beck, T. J., & Ghosh, D. (2023). Applying machine learning to identify ionizable lipids for nanoparticle-mediated delivery of mRNA. bioRxiv, 2023-11.
    https://doi.org/10.1101/2023.11.09.565872
  15. Li, Zhongyu, Xue?Qing Zhang, William Ho, Xin Bai, Dabbu Kumar Jaijyan, Fengqiao Li, Ranjeet Kumar et al. "Lipid?Polymer Hybrid “Particle?in?Particle” Nanostructure Gene Delivery Platform Explored for Lyophilizable DNA and mRNA COVID?19 Vaccines. Advanced Functional Materials. 2022
    https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202204462
  16. Lindsay, S., Hussain, M., Binici, B., & Perrie, Y. (2025). Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines, 13(4), 339.
    https://www.mdpi.com/2076-393X/13/4/339
  17. McMillan, C., Druschitz, A., Rumbelow, S., Borah, A., Binici, B., Rattray, Z., & Perrie, Y. (2024). Tailoring lipid nanoparticle dimensions through manufacturing processes. RSC pharmaceutics.
    https://pubs.rsc.org/en/content/articlehtml/2024/pm/d4pm00128a
  18. Reshetnikov, V., Terenin, I., Shepelkova, G., Yeremeev, V., Kolmykov, S., Nagornykh, M., ... & Ivanov, R. (2024). Untranslated Region Sequences and the Efficacy of mRNA Vaccines against Tuberculosis. International Journal of Molecular Sciences, 25(2), 888.
    https://www.mdpi.com/1422-0067/25/2/888
  19. Shepelkova, G. S., Reshetnikov, V. V., Avdienko, V. G., Sheverev, D. V., Yeremeev, V. V., & Ivanov, R. A. IMPACT OF UNTRANSLATED mRNA SEQUENCES ON IMMUNOGENICITY OF mRNA VACCINES AGAINST M. TUBERCULOSIS IN MICE.
    https://www.researchgate.net/profile/V-Yeremeev/publication/377479822_Impact_of_untranslated_mRNA_sequences_on_immunogenicity_of_mRNA_vaccines_against_M_tuberculosis_in_mice/links/65c1cae634bbff5ba7ef9969/Impact-of-untranslated-mRNA-sequences-on-immunogenicity-of-mRNA-vaccines-against-M-tuberculosis-in-mice.pdf
  20. Wei, C., Zhu, Y., Lu, X., Goodier, K. D., Yu, D., Liu, X., ... & Mao, H. Q. (2025). Systemic trafficking of mRNA lipid nanoparticle vaccine following intramuscular injection generates potent tissue-specific T cell response. bioRxiv, 2025-04.
    https://doi.org/10.1101/2025.04.21.649878